Classification and purification for the independent quantum channel
through quantum error-correction
- URL: http://arxiv.org/abs/2104.12952v3
- Date: Tue, 26 Oct 2021 07:34:11 GMT
- Title: Classification and purification for the independent quantum channel
through quantum error-correction
- Authors: Long Huang, Xiaohua Wu, Tao Zhou
- Abstract summary: It is found that quantum error-correction can be used to classify the independent quantum channel into 5 types.
The degree of purity of quantum channel determines its ability to retain the quantum property of the quantum state, not the fidelity.
- Score: 5.149117694516382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The essence of quantum error-correction is to use redundant Hilbert space to
identify and correct errors, and the channel fidelity of the quantum channel
does not affect which errors can be identified and corrected. Based on this, it
is found that quantum error-correction can be used to classify the independent
quantum channel into 5 types, and 4 of the 5 types can be purified. It is found
in quantum error-correction, the decoherence of quantum state may be related to
the degree of identification for the state under quantum noise, and the results
of this work confirmed that the degree of purity of quantum channel determines
its ability to retain the quantum property of the quantum state, not the
fidelity. In this work, the identification of the independent Pauli channels by
quantum error-correction is demonstrated.
Related papers
- Reshaping quantum device noise via quantum error correction [0.818005422059368]
We show that quantum error correction codes can reshape the native noise profiles of quantum devices.
We analytically derive the quantum channels describing noisy two-qubit entangling gates.
We then demonstrate the noise reshaping on the IonQ Aria-1 quantum hardware.
arXiv Detail & Related papers (2024-11-01T17:20:04Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Entanglement with Self-stabilizing Token Ring for Fault-tolerant
Distributed Quantum Computing System [0.0]
This paper shows how to construct quantum entanglement states of n qubits based on a self-stabilizing token ring algorithm.
The entangled states can be applied to the fields of the quantum network, quantum Internet, distributed quantum computing, and quantum cloud.
arXiv Detail & Related papers (2022-09-23T01:20:36Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Faithfulness and sensitivity for ancilla-assisted process tomography [0.0]
A system-ancilla bipartite state capable of containing the complete information of an unknown quantum channel acting on the system is called faithful.
We complete the proof of the equivalence and introduce the generalization of faithfulness to various classes of quantum channels.
arXiv Detail & Related papers (2022-06-13T04:19:22Z) - Quantum Network Tomography with Multi-party State Distribution [10.52717496410392]
characterization of quantum channels in a quantum network is of paramount importance.
We introduce the problem of Quantum Network Tomography.
We study this problem in detail for the case of arbitrary star quantum networks with quantum channels described by a single Pauli operator.
arXiv Detail & Related papers (2022-06-06T21:47:09Z) - Mitigating Quantum Errors via Truncated Neumann Series [10.04862322536857]
We propose a unified framework that can mitigate quantum gate and measurement errors in computing quantum expectation values.
The essential idea is to cancel the effect of quantum error by approximating its inverse via linearly combining quantum errors of different orders.
We test this framework for different quantum errors and find that the computation accuracy is substantially improved.
arXiv Detail & Related papers (2021-11-01T04:16:49Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.