A Knowledge Enhanced Learning and Semantic Composition Model for Multi-Claim Fact Checking
- URL: http://arxiv.org/abs/2104.13046v2
- Date: Mon, 29 Jul 2024 14:33:52 GMT
- Title: A Knowledge Enhanced Learning and Semantic Composition Model for Multi-Claim Fact Checking
- Authors: Shuai Wang, Penghui Wei, Qingchao Kong, Wenji Mao,
- Abstract summary: We propose an end-to-end knowledge enhanced learning and verification method for multi-claim fact checking.
Our method consists of two modules, KG-based learning enhancement and multi-claim semantic composition.
- Score: 18.395092826197267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To inhibit the spread of rumorous information and its severe consequences, traditional fact checking aims at retrieving relevant evidence to verify the veracity of a given claim. Fact checking methods typically use knowledge graphs (KGs) as external repositories and develop reasoning mechanism to retrieve evidence for verifying the triple claim. However, existing methods only focus on verifying a single claim. As real-world rumorous information is more complex and a textual statement is often composed of multiple clauses (i.e. represented as multiple claims instead of a single one), multiclaim fact checking is not only necessary but more important for practical applications. Although previous methods for verifying a single triple can be applied repeatedly to verify multiple triples one by one, they ignore the contextual information implied in a multi-claim statement and could not learn the rich semantic information in the statement as a whole. In this paper, we propose an end-to-end knowledge enhanced learning and verification method for multi-claim fact checking. Our method consists of two modules, KG-based learning enhancement and multi-claim semantic composition. To fully utilize the contextual information, the KG-based learning enhancement module learns the dynamic context-specific representations via selectively aggregating relevant attributes of entities. To capture the compositional semantics of multiple triples, the multi-claim semantic composition module constructs the graph structure to model claim-level interactions, and integrates global and salient local semantics with multi-head attention. Experimental results on a real-world dataset and two benchmark datasets show the effectiveness of our method for multi-claim fact checking over KG.
Related papers
- Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
We propose an innovative end-to-end generative framework for multi-modal knowledge retrieval.
Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases.
We demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
arXiv Detail & Related papers (2024-01-16T08:44:29Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification [22.785622371421876]
We present a pioneering dataset for multi-hop explainable fact verification.
With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents.
We demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification.
arXiv Detail & Related papers (2023-10-15T06:46:15Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - End-to-End Multimodal Fact-Checking and Explanation Generation: A
Challenging Dataset and Models [0.0]
We propose end-to-end multimodal fact-checking and explanation generation.
The goal is to assess the truthfulness of a claim by retrieving relevant evidence and predicting a truthfulness label.
To support this research, we construct Mocheg, a large-scale dataset consisting of 15,601 claims.
arXiv Detail & Related papers (2022-05-25T04:36:46Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection.
Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning.
We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.
arXiv Detail & Related papers (2022-04-16T16:45:06Z) - Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact
Verification [19.130541561303293]
We propose a novel topic-aware evidence reasoning and stance-aware aggregation model for fact verification.
Tests conducted on two benchmark datasets demonstrate the superiority of the proposed model over several state-of-the-art approaches for fact verification.
arXiv Detail & Related papers (2021-06-02T14:33:12Z) - Few Shot Learning for Information Verification [0.0]
We aim to verify facts based on evidence selected from a list of articles taken from Wikipedia.
In this research, we aim to verify facts based on evidence selected from a list of articles taken from Wikipedia.
arXiv Detail & Related papers (2021-02-22T12:56:12Z) - Multi-Hop Fact Checking of Political Claims [43.25708842000248]
We study more complex claim verification of naturally occurring claims with multiple hops over interconnected evidence chunks.
We construct a small annotated dataset, PolitiHop, of evidence sentences for claim verification.
We find that the task is complex and achieve the best performance with an architecture that specifically models reasoning over evidence pieces.
arXiv Detail & Related papers (2020-09-10T13:54:15Z) - Inferential Text Generation with Multiple Knowledge Sources and
Meta-Learning [117.23425857240679]
We study the problem of generating inferential texts of events for a variety of commonsense like textitif-else relations.
Existing approaches typically use limited evidence from training examples and learn for each relation individually.
In this work, we use multiple knowledge sources as fuels for the model.
arXiv Detail & Related papers (2020-04-07T01:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.