論文の概要: Unsupervised Deep Manifold Attributed Graph Embedding
- arxiv url: http://arxiv.org/abs/2104.13048v1
- Date: Tue, 27 Apr 2021 08:47:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 20:08:07.042785
- Title: Unsupervised Deep Manifold Attributed Graph Embedding
- Title(参考訳): 教師なしDeep Manifold Attributed Graph Embedding
- Authors: Zelin Zang, Siyuan Li, Di Wu, Jianzhu Guo, Yongjie Xu, Stan Z. Li
- Abstract要約: Deep Manifold Attributed Graph Embedding (DMAGE) という新しいグラフ埋め込みフレームワークを提案する。
データ空間と潜在空間の間のノード間類似性を計算するために,ノード間測地線類似性を提案する。
次に、オーバースムージング問題を軽減するため、集約の少ない新しいネットワーク構造を設計します。
- 参考スコア(独自算出の注目度): 33.1202078188891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised attributed graph representation learning is challenging since
both structural and feature information are required to be represented in the
latent space. Existing methods concentrate on learning latent representation
via reconstruction tasks, but cannot directly optimize representation and are
prone to oversmoothing, thus limiting the applications on downstream tasks. To
alleviate these issues, we propose a novel graph embedding framework named Deep
Manifold Attributed Graph Embedding (DMAGE). A node-to-node geodesic similarity
is proposed to compute the inter-node similarity between the data space and the
latent space and then use Bergman divergence as loss function to minimize the
difference between them. We then design a new network structure with fewer
aggregation to alleviate the oversmoothing problem and incorporate graph
structure augmentation to improve the representation's stability. Our proposed
DMAGE surpasses state-of-the-art methods by a significant margin on three
downstream tasks: unsupervised visualization, node clustering, and link
prediction across four popular datasets.
- Abstract(参考訳): 構造情報と特徴情報の両方を潜在空間で表現する必要があるため、教師なし属性グラフ表現学習は困難である。
既存の手法は再構築タスクを通じて潜在表現を学習することに集中しているが、直接表現を最適化することはできず、過剰に動作しやすいため、下流タスクでのアプリケーションを制限することができる。
これらの問題を緩和するために,Deep Manifold Attributed Graph Embedding (DMAGE) という新しいグラフ埋め込みフレームワークを提案する。
データ空間と潜在空間の間のノード間類似性を計算し、損失関数としてベルグマン発散を用いてそれらの差を最小化するノード間類似性を提案する。
次に,より少ないアグリゲーションを持つ新しいネットワーク構造を設計し,グラフ構造を拡張して表現の安定性を向上させる。
提案するDMAGEは,教師なし可視化,ノードクラスタリング,および4つの一般的なデータセット間のリンク予測という,3つの下流タスクにおいて,最先端の手法をはるかに上回っている。
関連論文リスト
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
ノード分類のためのグラフエコー状態ネットワーク(GESN)を用いた異種グラフの課題に対処する。
GESNはグラフのための貯水池計算モデルであり、ノードの埋め込みは訓練されていないメッセージパッシング関数によって計算される。
実験の結果, 貯水池モデルでは, ほぼ完全に訓練された深層モデルに対して, より優れた精度あるいは同等の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-14T19:42:31Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
GTGANは、グラフ制約のある住宅生成タスクにおいて、エンドツーエンドで効率的なグラフノード関係を学習する。
論文 参考訳(メタデータ) (2023-03-14T20:35:45Z) - Self-Supervised Node Representation Learning via Node-to-Neighbourhood
Alignment [10.879056662671802]
自己教師付きノード表現学習は、教師付きノードと競合する未ラベルグラフからノード表現を学ぶことを目的としている。
本研究では,ノードとその周辺領域の隠蔽表現を整列させることにより,単純なyet効率の自己教師付きノード表現学習を提案する。
我々は,グラフ構造化データセットの集合に対して,ノード分類性能が期待できるノード表現を,小規模から大規模に学習する。
論文 参考訳(メタデータ) (2023-02-09T13:21:18Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。