論文の概要: Property Inference Attacks on Convolutional Neural Networks: Influence
and Implications of Target Model's Complexity
- arxiv url: http://arxiv.org/abs/2104.13061v1
- Date: Tue, 27 Apr 2021 09:19:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 13:19:26.186899
- Title: Property Inference Attacks on Convolutional Neural Networks: Influence
and Implications of Target Model's Complexity
- Title(参考訳): 畳み込みニューラルネットワークにおける特性推定攻撃:ターゲットモデルの複雑度の影響と意味
- Authors: Mathias P. M. Parisot, Balazs Pejo and Dayana Spagnuelo
- Abstract要約: プロパティ推論攻撃は、トレーニングデータセットに関する与えられたモデルプロパティをモデルの主な目標とは無関係に推測することを目的としている。
本稿では,ターゲットモデルの複雑性が攻撃の精度に及ぼす影響について検討する。
その結果,ターゲットモデルの複雑さとは無関係に,プライバシ侵害のリスクがあることが判明した。
- 参考スコア(独自算出の注目度): 1.2891210250935143
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning models' goal is to make correct predictions for specific
tasks by learning important properties and patterns from data. By doing so,
there is a chance that the model learns properties that are unrelated to its
primary task. Property Inference Attacks exploit this and aim to infer from a
given model (\ie the target model) properties about the training dataset
seemingly unrelated to the model's primary goal. If the training data is
sensitive, such an attack could lead to privacy leakage. This paper
investigates the influence of the target model's complexity on the accuracy of
this type of attack, focusing on convolutional neural network classifiers. We
perform attacks on models that are trained on facial images to predict whether
someone's mouth is open. Our attacks' goal is to infer whether the training
dataset is balanced gender-wise. Our findings reveal that the risk of a privacy
breach is present independently of the target model's complexity: for all
studied architectures, the attack's accuracy is clearly over the baseline. We
discuss the implication of the property inference on personal data in the light
of Data Protection Regulations and Guidelines.
- Abstract(参考訳): 機械学習モデルの目標は、データから重要な特性やパターンを学ぶことで、特定のタスクの正確な予測を行うことである。
そうすることで、モデルは、その主要なタスクとは無関係なプロパティを学習する可能性がある。
プロパティ推論は、これを活用し、モデルの第一の目標とは無関係に見えるトレーニングデータセットに関する所定のモデル(ターゲットモデルを参照)プロパティから推論することを目的としている。
トレーニングデータがセンシティブであれば、そのような攻撃はプライバシーの漏洩につながる可能性がある。
本稿では,対象モデルの複雑さが,畳み込みニューラルネットワーク分類器に着目し,この種の攻撃の正確性に与える影響について検討する。
顔画像で訓練されたモデルに対して攻撃を行い、相手の口が開いているかを予測する。
私たちの攻撃目標は、トレーニングデータセットが性別的にバランスしているかどうかを推測することです。
調査結果から,プライバシ侵害のリスクは,ターゲットモデルの複雑さとは独立して存在していることが明らかになった。
本稿では,個人情報に対する財産推論の意義について,データ保護規則とガイドラインに照らして論じる。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - When Machine Learning Models Leak: An Exploration of Synthetic Training Data [0.0]
今後2年間で人や家庭が移転するかどうかを予測する機械学習モデルに対する攻撃について検討する。
この攻撃は、攻撃者がモデルをクエリして予測を得ることができ、モデルがトレーニングされたデータの限界分布が公開されていると仮定する。
モデルのトレーニングにおいて、元のデータを合成データに置き換えることが、攻撃者がどのように機密属性を推測できるかにどのように影響するかを検討する。
論文 参考訳(メタデータ) (2023-10-12T23:47:22Z) - Property inference attack; Graph neural networks; Privacy attacks and
defense; Trustworthy machine learning [5.598383724295497]
機械学習モデルは、トレーニングデータに関する情報を漏洩するプライバシー攻撃に弱い。
本研究では,プロパティ推論攻撃(PIA)と呼ばれる,特定の種類のプライバシ攻撃に焦点を当てる。
我々は、グラフニューラルネットワーク(GNN)を対象モデルとし、トレーニンググラフ内の特定のノードとリンクの分布を目標特性とみなす。
論文 参考訳(メタデータ) (2022-09-02T14:59:37Z) - SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles [50.90773979394264]
本稿では、個人の機密情報のプライバシーを保護しつつ、差別的でない予測者の学習を可能にするモデルについて検討する。
提案モデルの主な特徴は、プライバシ保護とフェアモデルを作成するために、オフ・ザ・セルフと非プライベートフェアモデルの採用を可能にすることである。
論文 参考訳(メタデータ) (2022-04-11T14:42:54Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - Variational Model Inversion Attacks [26.613251410498755]
モデル反転攻撃では、悪意のあるユーザは、教師付きニューラルネットワークをトレーニングするために使用されるプライベートデータセットを復元しようとします。
成功したモデル反転攻撃は、プライベートデータセット内の各クラスを正確に記述する現実的で多様なサンプルを生成する必要がある。
本研究では,モデル反転攻撃の確率論的解釈を提供し,多様性と精度の両方を考慮に入れた変動目的を定式化する。
論文 参考訳(メタデータ) (2022-01-26T07:39:13Z) - Are Your Sensitive Attributes Private? Novel Model Inversion Attribute
Inference Attacks on Classification Models [22.569705869469814]
トレーニングデータ中のレコードの非感受性属性を敵が知る場合のモデル反転攻撃に着目した。
我々は,信頼性スコアに基づくモデル逆属性推論攻撃を考案し,その精度を著しく向上させる。
また、ターゲットレコードの他の(非感受性の)属性が敵に未知なシナリオにまで攻撃を拡大します。
論文 参考訳(メタデータ) (2022-01-23T21:27:20Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
メンバーシップ推論攻撃は、モデルがトレーニングセット内の個々のデータポイントについてリークする個人情報の定量化に使用される。
我々は,AUCスコアを高い精度で達成できる新たな攻撃アルゴリズムを導き,その性能に影響を及ぼすさまざまな要因を強調した。
我々のアルゴリズムは、モデルにおけるプライバシ損失の極めて正確な近似を捉え、機械学習モデルにおけるプライバシリスクの正確かつ詳細な推定を行うためのツールとして使用することができる。
論文 参考訳(メタデータ) (2021-11-18T13:31:22Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。