論文の概要: Enhanced Membership Inference Attacks against Machine Learning Models
- arxiv url: http://arxiv.org/abs/2111.09679v1
- Date: Thu, 18 Nov 2021 13:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-19 13:52:44.610096
- Title: Enhanced Membership Inference Attacks against Machine Learning Models
- Title(参考訳): 機械学習モデルに対するメンバーシップ推論攻撃の強化
- Authors: Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Reza Shokri
- Abstract要約: メンバーシップ推論攻撃は、モデルがトレーニングセット内の個々のデータポイントについてリークする個人情報の定量化に使用される。
我々は,AUCスコアを高い精度で達成できる新たな攻撃アルゴリズムを導き,その性能に影響を及ぼすさまざまな要因を強調した。
我々のアルゴリズムは、モデルにおけるプライバシ損失の極めて正確な近似を捉え、機械学習モデルにおけるプライバシリスクの正確かつ詳細な推定を行うためのツールとして使用することができる。
- 参考スコア(独自算出の注目度): 9.26208227402571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How much does a given trained model leak about each individual data record in
its training set? Membership inference attacks are used as an auditing tool to
quantify the private information that a model leaks about the individual data
points in its training set. Membership inference attacks are influenced by
different uncertainties that an attacker has to resolve about training data,
the training algorithm, and the underlying data distribution. Thus attack
success rates, of many attacks in the literature, do not precisely capture the
information leakage of models about their data, as they also reflect other
uncertainties that the attack algorithm has. In this paper, we explain the
implicit assumptions and also the simplifications made in prior work using the
framework of hypothesis testing. We also derive new attack algorithms from the
framework that can achieve a high AUC score while also highlighting the
different factors that affect their performance. Our algorithms capture a very
precise approximation of privacy loss in models, and can be used as a tool to
perform an accurate and informed estimation of privacy risk in machine learning
models. We provide a thorough empirical evaluation of our attack strategies on
various machine learning tasks and benchmark datasets.
- Abstract(参考訳): トレーニングセット内の個々のデータレコードについて、トレーニングされたモデルがどの程度リークしているか?
メンバーシップ推論攻撃は、モデルがトレーニングセット内の個々のデータポイントについてリークするプライベート情報を定量化する監査ツールとして使用される。
メンバーシップ推論攻撃は、攻撃者がトレーニングデータ、トレーニングアルゴリズム、基礎となるデータ分布について解決しなければならないさまざまな不確実性に影響される。
したがって、攻撃の成功率(文献における多くの攻撃)は、攻撃アルゴリズムが持つ他の不確実性も反映しているため、そのデータに関するモデルの情報漏洩を正確に捉えていない。
本稿では,仮説テストの枠組みを用いて,先行研究における暗黙的な仮定と単純化について述べる。
また,高いaucスコアを達成可能なフレームワークから新たな攻撃アルゴリズムを導出するとともに,その性能に影響するさまざまな要因を強調する。
我々のアルゴリズムは、モデルにおけるプライバシ損失の極めて正確な近似を捉え、機械学習モデルにおけるプライバシリスクの正確かつ詳細な推定を行うためのツールとして使用できる。
我々は、さまざまな機械学習タスクやベンチマークデータセットに対する攻撃戦略を徹底的に評価する。
関連論文リスト
- Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
我々は要約作業に焦点をあて、会員推測(MI)攻撃について調査する。
テキストの類似性や文書修正に対するモデルの抵抗をMI信号として活用する。
我々は、MI攻撃から保護するための要約モデルの訓練と、プライバシとユーティリティの本質的にのトレードオフについて議論する。
論文 参考訳(メタデータ) (2023-10-20T05:44:39Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
ブラックボックス設定において、より高い攻撃精度を達成できる学習ベースモデル反転攻撃のための新しい訓練パラダイムを提案する。
まず,攻撃モデルの学習過程を,意味的損失関数を追加して規則化する。
第2に、学習データに逆例を注入し、クラス関連部の多様性を高める。
論文 参考訳(メタデータ) (2023-06-24T13:40:58Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
そこで本研究では,対象モデルのトレーニングプロセス全体から,メンバシップ情報を利用する新たな攻撃手法であるシステムを提案する。
我々の攻撃は、既存の方法よりも0.1%低い偽陽性率で、少なくとも6$times$高い真陽性率を達成する。
論文 参考訳(メタデータ) (2022-08-31T16:02:26Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。
私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。
私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (2022-03-31T18:06:28Z) - Leveraging Adversarial Examples to Quantify Membership Information
Leakage [30.55736840515317]
パターン認識モデルにおけるメンバシップ推論の問題に対処する新しいアプローチを開発する。
この量はトレーニングデータに属する可能性を反映していると我々は主張する。
我々の手法は、最先端の戦略に匹敵する、あるいは上回る性能を発揮する。
論文 参考訳(メタデータ) (2022-03-17T19:09:38Z) - Formalizing and Estimating Distribution Inference Risks [11.650381752104298]
プロパティ推論攻撃の形式的および一般的な定義を提案する。
以上の結果から,安価なメタクラス化攻撃は高価なメタクラス化攻撃と同じくらい効果的であることが示唆された。
我々は、最先端のプロパティ推論攻撃を畳み込みニューラルネットワークに拡張する。
論文 参考訳(メタデータ) (2021-09-13T14:54:39Z) - Property Inference Attacks on Convolutional Neural Networks: Influence
and Implications of Target Model's Complexity [1.2891210250935143]
プロパティ推論攻撃は、トレーニングデータセットに関する与えられたモデルプロパティをモデルの主な目標とは無関係に推測することを目的としている。
本稿では,ターゲットモデルの複雑性が攻撃の精度に及ぼす影響について検討する。
その結果,ターゲットモデルの複雑さとは無関係に,プライバシ侵害のリスクがあることが判明した。
論文 参考訳(メタデータ) (2021-04-27T09:19:36Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。