論文の概要: Shellcode_IA32: A Dataset for Automatic Shellcode Generation
- arxiv url: http://arxiv.org/abs/2104.13100v1
- Date: Tue, 27 Apr 2021 10:50:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 19:22:47.972042
- Title: Shellcode_IA32: A Dataset for Automatic Shellcode Generation
- Title(参考訳): Shellcode_IA32: 自動シェルコード生成のためのデータセット
- Authors: Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella,
Bojan Cukic and Samira Shaikh
- Abstract要約: 私たちは、ソフトウェア脆弱性の悪用にペイロードとして使用される小さなコード、すなわちシェルコードを自動的に生成するタスクに対処するための第一歩を踏み出します。
我々は,困難だが一般的なアセンブリ命令と自然言語記述からなる新しいデータセット(Shellcode_IA32)を組み立て,リリースする。
- 参考スコア(独自算出の注目度): 2.609784101826762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We take the first step to address the task of automatically generating
shellcodes, i.e., small pieces of code used as a payload in the exploitation of
a software vulnerability, starting from natural language comments. We assemble
and release a novel dataset (Shellcode_IA32), consisting of challenging but
common assembly instructions with their natural language descriptions. We
experiment with standard methods in neural machine translation (NMT) to
establish baseline performance levels on this task.
- Abstract(参考訳): 私たちは、シェルコードを自動的に生成するタスク、すなわち、自然言語コメントから始まるソフトウェア脆弱性を悪用するペイロードとして使用される小さなコードに対処する第一歩を踏み出します。
我々は,困難だが一般的なアセンブリ命令と自然言語記述からなる新しいデータセット(Shellcode_IA32)を組み立て,リリースする。
我々は,ニューラルマシン翻訳(nmt)における標準手法を用いて,このタスクのベースライン性能レベルを確立する。
関連論文リスト
- NoviCode: Generating Programs from Natural Language Utterances by Novices [59.71218039095155]
初心者非プログラマによるAPIと自然言語記述を入力とする新しいNLプログラミングタスクであるNoviCodeを提示する。
我々は、NoviCodeがコード合成領域における挑戦的なタスクであることを示し、非技術的命令から複雑なコードを生成することは、現在のText-to-Codeパラダイムを超えている。
論文 参考訳(メタデータ) (2024-07-15T11:26:03Z) - Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - The Power of Words: Generating PowerShell Attacks from Natural Language [4.593752628215474]
本研究は,機械翻訳(NMT)を用いたAIコード生成における未知領域の探索である。
我々は,最先端NMTモデルの広範囲な評価を行い,静的かつ動的に生成したコードを解析する。
論文 参考訳(メタデータ) (2024-04-19T13:54:34Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Guess & Sketch: Language Model Guided Transpilation [59.02147255276078]
学習されたトランスパイレーションは、手作業による書き直しやエンジニアリングの取り組みに代わるものだ。
確率的ニューラルネットワークモデル(LM)は、入力毎に可塑性出力を生成するが、正確性を保証するコストがかかる。
Guess & Sketch は LM の特徴からアライメントと信頼性情報を抽出し、意味的等価性を解決するためにシンボリック・ソルバに渡す。
論文 参考訳(メタデータ) (2023-09-25T15:42:18Z) - Python Code Generation by Asking Clarification Questions [57.63906360576212]
本稿では,この課題に対して,より斬新で現実的なセットアップを導入する。
我々は、自然言語記述の過小評価は、明確化を問うことで解決できると仮定する。
我々は、生成した合成明確化質問と回答を含む自然言語記述とコードのペアを含む、CodeClarQAという新しいデータセットを収集し、導入する。
論文 参考訳(メタデータ) (2022-12-19T22:08:36Z) - Can We Generate Shellcodes via Natural Language? An Empirical Study [4.82810058837951]
本稿では,ニューラルネットワークを用いたシェルコードの自動生成手法を提案する。
Shellcode_IA32は、実際のLinux/x86シェルコードの3,200のアセンブリコードスニペットで構成されている。
我々は,NMTが自然言語からアセンブリコードスニペットを高い精度で生成できることを示し,多くの場合,誤りのないシェルコード全体を生成可能であることを示した。
論文 参考訳(メタデータ) (2022-02-08T09:57:34Z) - Using Document Similarity Methods to create Parallel Datasets for Code
Translation [60.36392618065203]
あるプログラミング言語から別のプログラミング言語へのソースコードの翻訳は、重要で時間を要する作業です。
本稿では、文書類似性手法を用いて、ノイズの多い並列データセットを作成することを提案する。
これらのモデルは、妥当なレベルのノイズに対して、地上の真実に基づいて訓練されたモデルと相容れない性能を示す。
論文 参考訳(メタデータ) (2021-10-11T17:07:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。