論文の概要: CodecLM: Aligning Language Models with Tailored Synthetic Data
- arxiv url: http://arxiv.org/abs/2404.05875v1
- Date: Mon, 8 Apr 2024 21:15:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 16:37:51.058214
- Title: CodecLM: Aligning Language Models with Tailored Synthetic Data
- Title(参考訳): CodecLM: テーラー合成データによる言語モデルの調整
- Authors: Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T. Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, Tomas Pfister,
- Abstract要約: 命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
- 参考スコア(独自算出の注目度): 51.59223474427153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users' actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts.
- Abstract(参考訳): 大規模言語モデル(LLM)を特定のタスク命令と整合させる鍵としてインストラクションチューニングが登場し,次世代の予測目標とユーザの実際の目標との相違を緩和している。
人間によるデータの収集や注釈作成に要する時間と労力を削減するため、研究者はLLMを使用して命令に整合した合成データを生成する。
最近の研究は、様々な命令を生成し、LLMを適用して命令の複雑さを高めることに集中しており、しばしば下流のユースケースを無視している。
異なるターゲット命令分布とLLMにおいて、より優れた命令追従能力を実現するために、高品質なデータをどのように調整するかは、まだ不明である。
そこで本研究では,下流の命令分布の異なるLLMアライメントのための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
Encode-Decodeの原則に基づいて、私たちはLLMをコーデックとして、データ生成プロセスのガイドに使用しています。
まず、ターゲットの命令分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードし、その後、メタデータをデコードして、カスタマイズされた命令を生成する。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
ベンチマークによる4つのオープンドメイン命令に対する大規模な実験は、現在の最先端技術に対するCodecLMの有効性を検証する。
関連論文リスト
- Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
本稿では,人間とLLMの選好アライメントという2つのユニークな視点から導いた,新しい命令キュレーションアルゴリズムを提案する。
実験により,合成マルチモーダル命令を最大90%圧縮することにより,モデル性能の維持や改善が可能であることが示された。
論文 参考訳(メタデータ) (2024-09-27T08:20:59Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct [43.7550233177368]
本稿では,逆ではなくコードスニペットからの命令を要約したINVERSE-INSTRUCTを提案する。
InverseCoder というコード LLM のシリーズを提示する。これは、広範囲のベンチマークにおいて、元のコード LLM のパフォーマンスを上回ります。
論文 参考訳(メタデータ) (2024-07-08T08:00:05Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - Grounding Data Science Code Generation with Input-Output Specifications [32.07033683677839]
大規模言語モデル(LLM)は、最近、自然言語プロンプトからコードを生成する驚くべき能力を示した。
LLMは出力をNLプロンプトとI/O仕様の両方と整合させることが困難である。
I/O 仕様に対する LLM の微調整のための新しい手法である GIFT4Code を提案する。
論文 参考訳(メタデータ) (2024-02-12T21:32:49Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Harnessing the Zero-Shot Power of Instruction-Tuned Large Language Model in End-to-End Speech Recognition [23.172469312225694]
自動音声認識(ASR)におけるテキスト生成プロセスの指導に,命令調整付き大言語モデル(LLM)を用いることを提案する。
提案手法はCTCとアテンションアーキテクチャを併用し,LLMはデコーダのフロントエンド特徴抽出器として機能する。
実験結果から,LLM誘導モデルによる単語誤り率の相対的な増加率は,主要なベンチマークで約13%であった。
論文 参考訳(メタデータ) (2023-09-19T11:10:50Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。