論文の概要: Semi-Supervised Joint Estimation of Word and Document Readability
- arxiv url: http://arxiv.org/abs/2104.13103v1
- Date: Tue, 27 Apr 2021 10:56:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 13:31:48.341592
- Title: Semi-Supervised Joint Estimation of Word and Document Readability
- Title(参考訳): 単語と文書の可読性の半教師あり共同推定
- Authors: Yoshinari Fujinuma, Masato Hagiwara
- Abstract要約: グラフ畳み込みネットワーク(GCN)による単語と文書の難易度を共同で推定することを提案する。
実験結果から, GCN法は強いベースラインよりも高い精度を達成でき, 少ないラベルデータでも堅牢なままであることがわかった。
- 参考スコア(独自算出の注目度): 6.34044741105807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Readability or difficulty estimation of words and documents has been
investigated independently in the literature, often assuming the existence of
extensive annotated resources for the other. Motivated by our analysis showing
that there is a recursive relationship between word and document difficulty, we
propose to jointly estimate word and document difficulty through a graph
convolutional network (GCN) in a semi-supervised fashion. Our experimental
results reveal that the GCN-based method can achieve higher accuracy than
strong baselines, and stays robust even with a smaller amount of labeled data.
- Abstract(参考訳): 単語や文書の可読性や難易度の推定は、文献において独立して研究されており、しばしば相互に注釈付きリソースの存在を仮定している。
本稿では,単語と文書の難易度に再帰的な相関関係が存在することを示す分析によって,グラフ畳み込みネットワーク(GCN)を半教師付き方式で,単語と文書の難易度を共同で推定することを提案する。
実験の結果,GCN法は強いベースラインよりも精度が高く,ラベル付きデータが少ない場合でも頑健であることがわかった。
関連論文リスト
- GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
ドキュメントレベルの関係抽出(DocRE)は、構造化されていない文書テキストからエンティティ間の関係を抽出することを目的としている。
これらの課題を克服するために,DocREの新しいモデルであるGEGAを提案する。
我々は、広く使用されている3つのベンチマークデータセット、DocRED、Re-DocRED、Revisit-DocREDでGEGAモデルを評価する。
論文 参考訳(メタデータ) (2024-07-31T07:15:33Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
自然言語推論とクレーム抽出(FENICE)に基づく要約のファクチュアリティ評価を提案する。
FENICEは、ソース文書内の情報と、要約から抽出されたクレームと呼ばれる一連の原子的事実との間のNLIベースのアライメントを利用する。
我々の測定基準は、事実性評価のためのデファクトベンチマークであるAGGREFACTに関する新しい技術状況を設定する。
論文 参考訳(メタデータ) (2024-03-04T17:57:18Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - WMDecompose: A Framework for Leveraging the Interpretable Properties of
Word Mover's Distance in Sociocultural Analysis [0.0]
妥当性と解釈可能性のバランスをとる一般的なモデルは、Word Mover's Distance (WMD)である。
WMDecomposeは、文書レベル距離を構成語レベル距離に分解し、その後、単語をクラスタ化してテーマ要素を誘導するモデルおよびPythonライブラリである。
論文 参考訳(メタデータ) (2021-10-14T13:04:38Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z) - SueNes: A Weakly Supervised Approach to Evaluating Single-Document
Summarization via Negative Sampling [25.299937353444854]
本研究は,参照要約の存在を伴わない,弱教師付き要約評価手法に対する概念実証研究である。
既存の要約データセットの大量データは、文書と破損した参照要約とのペアリングによってトレーニングのために変換される。
論文 参考訳(メタデータ) (2020-05-13T15:40:13Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
本稿では,潜在文書レベルグラフを自動的に誘導することにより,文間の関係推論を促進する新しいモデルを提案する。
具体的には、大規模文書レベルデータセット(DocRED)上でF1スコア59.05を達成する。
論文 参考訳(メタデータ) (2020-05-13T13:36:09Z) - A Framework for Evaluation of Machine Reading Comprehension Gold
Standards [7.6250852763032375]
本稿では,現在の言語的特徴,必要な推論,背景知識,事実的正当性を調査するための統一的な枠組みを提案する。
語彙的曖昧さに寄与する特徴の欠如、期待される回答の様々な事実的正しさ、および語彙的手がかりの存在は、いずれも、評価データの読解の複雑さと品質を低下させる可能性がある。
論文 参考訳(メタデータ) (2020-03-10T11:30:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。