High-order Multi-view Clustering for Generic Data
- URL: http://arxiv.org/abs/2209.10838v1
- Date: Thu, 22 Sep 2022 07:49:38 GMT
- Title: High-order Multi-view Clustering for Generic Data
- Authors: Erlin Pan, Zhao Kang
- Abstract summary: Graph-based multi-view clustering has achieved better performance than most non-graph approaches.
We introduce an approach called high-order multi-view clustering (HMvC) to explore the topology structure information of generic data.
- Score: 15.764819403555512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based multi-view clustering has achieved better performance than most
non-graph approaches. However, in many real-world scenarios, the graph
structure of data is not given or the quality of initial graph is poor.
Additionally, existing methods largely neglect the high-order neighborhood
information that characterizes complex intrinsic interactions. To tackle these
problems, we introduce an approach called high-order multi-view clustering
(HMvC) to explore the topology structure information of generic data. Firstly,
graph filtering is applied to encode structure information, which unifies the
processing of attributed graph data and non-graph data in a single framework.
Secondly, up to infinity-order intrinsic relationships are exploited to enrich
the learned graph. Thirdly, to explore the consistent and complementary
information of various views, an adaptive graph fusion mechanism is proposed to
achieve a consensus graph. Comprehensive experimental results on both non-graph
and attributed graph data show the superior performance of our method with
respect to various state-of-the-art techniques, including some deep learning
methods.
Related papers
- Scalable Multi-view Clustering with Graph Filtering [18.83570662893356]
We propose a generic framework to cluster both attribute and graph data with heterogeneous features.
Specifically, we first adopt graph filtering technique to eliminate high-frequency noise.
To handle the scalability challenge, we develop a novel sampling strategy to improve the quality of anchors.
arXiv Detail & Related papers (2022-05-18T22:04:23Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Multi-view Contrastive Graph Clustering [12.463334005083379]
We propose a generic framework to cluster multi-view attributed graph data.
Inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method.
Our simple approach outperforms existing deep learning-based methods.
arXiv Detail & Related papers (2021-10-22T15:22:42Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views.
We propose a new multi-view graph learning framework, which for the first time simultaneously models multi-view consistency and multi-view inconsistency in a unified objective function.
Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
arXiv Detail & Related papers (2020-08-24T06:11:29Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.