論文の概要: KAMA: 3D Keypoint Aware Body Mesh Articulation
- arxiv url: http://arxiv.org/abs/2104.13502v1
- Date: Tue, 27 Apr 2021 23:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 12:50:32.368325
- Title: KAMA: 3D Keypoint Aware Body Mesh Articulation
- Title(参考訳): KAMA:ボディメッシュアーティキュレーションを意識した3Dキーポイント
- Authors: Umar Iqbal, Kevin Xie, Yunrong Guo, Jan Kautz, Pavlo Molchanov
- Abstract要約: 本稿では,パラメトリックなボディーモデルSMPLを簡単な幾何学的変換によって記述する解析解を提案する。
今回のアプローチは,最先端のアプローチと比較して,画像コンテンツのアライメントが大幅に向上する。
挑戦的な3DPWおよびHuman3.6Mの結果は私達のアプローチが最先端のボディ網付属品をもたらすことを示します。
- 参考スコア(独自算出の注目度): 79.04090630502782
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present KAMA, a 3D Keypoint Aware Mesh Articulation approach that allows
us to estimate a human body mesh from the positions of 3D body keypoints. To
this end, we learn to estimate 3D positions of 26 body keypoints and propose an
analytical solution to articulate a parametric body model, SMPL, via a set of
straightforward geometric transformations. Since keypoint estimation directly
relies on image clues, our approach offers significantly better alignment to
image content when compared to state-of-the-art approaches. Our proposed
approach does not require any paired mesh annotations and is able to achieve
state-of-the-art mesh fittings through 3D keypoint regression only. Results on
the challenging 3DPW and Human3.6M demonstrate that our approach yields
state-of-the-art body mesh fittings.
- Abstract(参考訳): 本研究では,人体メッシュを3次元キーポイントの位置から推定する3次元キーポイント認識メッシュ調音手法であるkamaを提案する。
そこで本研究では,26個のキーポイントの3次元位置を推定し,簡単な幾何学的変換を用いてパラメトリックボディモデルSMPLを記述するための解析解を提案する。
キーポイント推定は画像手がかりに直接依存するため,本手法は最先端の手法に比べて画像内容のアライメントが有意に向上する。
提案手法では,2対のメッシュアノテーションを必要とせず,3次元キーポイント回帰のみを通じて最先端のメッシュフィッティングを実現することができる。
挑戦的な3DPWとHuman3.6Mの結果は、我々のアプローチが最先端のボディーメッシュフィッティングをもたらすことを示している。
関連論文リスト
- Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
本稿では,1枚のRGB画像から3次元メッシュ再構成を行うための簡易かつ強力な手法を提案する。
評価実験の結果,提案手法は3次元メッシュ再構成の性能を効率よく向上することが示された。
論文 参考訳(メタデータ) (2023-04-19T08:45:26Z) - Unsupervised 3D Keypoint Discovery with Multi-View Geometry [104.76006413355485]
本研究では,多視点画像から人体上の3Dキーポイントを,監督やラベルなしで発見するアルゴリズムを提案する。
我々の手法は、他の最先端の教師なしアプローチと比較して、より解釈可能で正確な3Dキーポイントを発見する。
論文 参考訳(メタデータ) (2022-11-23T10:25:12Z) - Multi-Person 3D Pose and Shape Estimation via Inverse Kinematics and
Refinement [5.655207244072081]
モノクロRGB画像からメッシュ形状の3Dポーズと形状を推定することは困難である。
そこで本研究では, 1) 閉塞・腐食3次元骨格推定による逆運動学の利点を生かした粗粒間パイプラインを提案する。
本研究では,3DPW, MuPoTS, AGORAデータセット上での最先端の手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-10-24T18:29:06Z) - Neural Capture of Animatable 3D Human from Monocular Video [38.974181971541846]
本稿では,モノクラービデオ入力からアニマタブルな3次元人間の表現を構築するための新しいパラダイムを提案する。
本手法は,メッシュをベースとしたパラメトリックな3次元人体モデルを用いた動的ニューラルレージアンス場(NeRF)に基づく。
論文 参考訳(メタデータ) (2022-08-18T09:20:48Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
本稿では,学習向きのみを用いて3次元ポーズを頑健に推定できる新しいPose Orientation Net(PONet)を提案する。
PONetは、局所的な画像証拠を利用して、これらの手足の3D方向を推定し、3Dポーズを復元する。
我々は,Human3.6M,MPII,MPI-INF-3DHP,3DPWを含む複数のデータセットについて評価を行った。
論文 参考訳(メタデータ) (2021-12-21T12:48:48Z) - End-to-End Learning of Multi-category 3D Pose and Shape Estimation [128.881857704338]
本稿では,画像から2次元キーポイントを同時に検出し,それらを3次元に引き上げるエンド・ツー・エンド手法を提案する。
提案手法は2次元キーポイントアノテーションからのみ2次元検出と3次元リフトを学習する。
画像から3D学習へのエンドツーエンド化に加えて,1つのニューラルネットワークを用いて複数のカテゴリからのオブジェクトも処理する。
論文 参考訳(メタデータ) (2021-12-19T17:10:40Z) - Direct Multi-view Multi-person 3D Pose Estimation [138.48139701871213]
マルチビュー画像からマルチパーソン3Dポーズを推定するためのMulti-view Pose Transformer(MvP)を提案する。
MvPは、中間タスクに頼ることなく、複数の人物の3Dポーズを直接クリーンで効率的な方法で回帰する。
我々は,MvPモデルがより効率的でありながら,いくつかのベンチマークにおいて最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-07T13:09:20Z) - HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D
Human Pose and Shape Estimation [39.67289969828706]
本稿では,体メッシュ推定と3次元キーポイント推定のギャップを埋めるために,新しいハイブリッド逆キネマティクスソリューション(HybrIK)を提案する。
HybrIKは、正確な3D関節を相対的なボディ部分回転に変換し、3Dボディーメッシュを再構築する。
その結果,HybrIKは3次元ポーズの精度とパラメトリックな人間の身体構造の両方を保っていることがわかった。
論文 参考訳(メタデータ) (2020-11-30T10:32:30Z) - HEMlets PoSh: Learning Part-Centric Heatmap Triplets for 3D Human Pose
and Shape Estimation [60.35776484235304]
本研究は, 中間状態部分熱マップトリプレット(HEMlets)を導入し, 検出された2次元関節を三次元空間に持ち上げる不確実性に対処しようとするものである。
HEMletsは3つのジョイントヒートマップを使用して、各骨格体部に対するエンドジョイントの相対的な深さ情報を表す。
Convolutional Network (ConvNet) は、入力画像からHEMletを予測し、次にボリュームのジョイント・ヒートマップレグレッションを学習する。
論文 参考訳(メタデータ) (2020-03-10T04:03:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。