Highly efficient charging and discharging of three-level quantum
batteries through shortcuts to adiabaticity
- URL: http://arxiv.org/abs/2104.13668v1
- Date: Wed, 28 Apr 2021 09:47:15 GMT
- Title: Highly efficient charging and discharging of three-level quantum
batteries through shortcuts to adiabaticity
- Authors: Fu-Quan Dou, Yuan-Jin Wang, Jian-An Sun
- Abstract summary: We investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery.
The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery.
We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum batteries are energy storage devices that satisfy quantum mechanical
principles. How to improve the battery's performance such as stored energy and
power is a crucial element in the quantum battery. Here, we investigate the
charging and discharging dynamics of a three-level counterdiabatic stimulated
Raman adiabatic passage quantum battery via shortcuts to adiabaticity, which
can compensate for undesired transitions to realize a fast adiabatic evolution
through the application of an additional control field to an initial
Hamiltonian. The scheme can significantly speed up the charging and discharging
processes of a three-level quantum battery and obtain more stored energy and
higher power compared with the original stimulated Raman adiabatic passage. We
explore the effect of both the amplitude and the delay time of driving fields
on the performances of the quantum battery. Possible experimental
implementation in superconducting circuit and nitrogen-vacancy center is also
discussed.
Related papers
- Harnessing Nth Root Gates for Energy Storage [30.733286944793527]
We explore the use of fractional control-not gates in quantum thermodynamics.
Nth-root gate allows for a paced application of two-qubit operations.
We apply it in quantum thermodynamic protocols for charging a quantum battery.
arXiv Detail & Related papers (2024-09-16T14:57:55Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Energetics of a pulsed quantum battery [0.0]
We present a transparent analytic model of a two-component quantum battery composed of a charger and an energy holder.
We discuss explicitly the optimal design of the battery in terms of the driving strength of the pulse, the coupling between the charger and the holder, and the inevitable energy loss into the environment.
We anticipate that our theory can act as a helpful guide for the nascent experimental work building and characterizing the first generation of truly quantum batteries.
arXiv Detail & Related papers (2024-03-29T12:54:53Z) - Nonreciprocal Quantum Batteries [0.0]
We introduce nonreciprocity through reservoir engineering during the charging process, resulting in a substantial increase in energy accumulation.
Despite local dissipation, the nonreciprocal approach demonstrates a fourfold increase in battery energy.
In a broader context, the concept of nonreciprocal charging has significant implications for sensing, energy capture, and storage technologies.
arXiv Detail & Related papers (2024-01-10T11:50:03Z) - A quantum battery with quadratic driving [0.0]
Quantum batteries are energy storage devices built using quantum mechanical objects.
We study theoretically a bipartite quantum battery model, composed of a driven charger connected to an energy holder.
arXiv Detail & Related papers (2023-11-04T15:01:36Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
arXiv Detail & Related papers (2022-12-01T17:06:35Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Optimal charging of a superconducting quantum battery [13.084212951440033]
We report the experimental realization of a quantum battery based on superconducting qubits.
Our model explores dark and bright states to achieve stable and powerful charging processes, respectively.
Our results pave the way for proposals of new superconducting circuits able to store extractable work for further usage.
arXiv Detail & Related papers (2021-08-09T18:53:07Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Closed-loop three-level charged quantum battery [0.0]
We present a closed-loop quantum battery by utilizing a closed-loop three-state quantum system.
We investigate the charging process of the closed-loop three-level quantum battery.
Possible experimental implementation in nitrogen-vacancy spin is discussed.
arXiv Detail & Related papers (2020-04-20T16:33:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.