Hybrid Gate-Pulse Model for Variational Quantum Algorithms
- URL: http://arxiv.org/abs/2212.00661v1
- Date: Thu, 1 Dec 2022 17:06:35 GMT
- Title: Hybrid Gate-Pulse Model for Variational Quantum Algorithms
- Authors: Zhiding Liang, Zhixin Song, Jinglei Cheng, Zichang He, Ji Liu, Hanrui
Wang, Ruiyang Qin, Yiru Wang, Song Han, Xuehai Qian, Yiyu Shi
- Abstract summary: Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
- Score: 33.73469431747376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current quantum programs are mostly synthesized and compiled on the
gate-level, where quantum circuits are composed of quantum gates. The
gate-level workflow, however, introduces significant redundancy when quantum
gates are eventually transformed into control signals and applied on quantum
devices. For superconducting quantum computers, the control signals are
microwave pulses. Therefore, pulse-level optimization has gained more attention
from researchers due to their advantages in terms of circuit duration. Recent
works, however, are limited by their poor scalability brought by the large
parameter space of control signals. In addition, the lack of gate-level
"knowledge" also affects the performance of pure pulse-level frameworks. We
present a hybrid gate-pulse model that can mitigate these problems. We propose
to use gate-level compilation and optimization for "fixed" part of the quantum
circuits and to use pulse-level methods for problem-agnostic parts.
Experimental results demonstrate the efficiency of the proposed framework in
discrete optimization tasks. We achieve a performance boost at most 8% with 60%
shorter pulse duration in the problem-agnostic layer.
Related papers
- Tackling Coherent Noise in Quantum Computing via Cross-Layer Compiler Optimization [1.6436891312063917]
Quantum computing hardware is affected by quantum noise that undermine the quality of results of an executed quantum program.
Coherent error that caused by parameter drifting and miscalibration remains critical.
This work proposes a cross-layer approach for coherent error mitigation.
arXiv Detail & Related papers (2024-10-12T22:39:06Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fast Ion Gates Outside the Lamb-Dicke Regime by Robust Quantum Optimal
Control [16.769083043152627]
We present a quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.
The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates.
Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation.
arXiv Detail & Related papers (2022-09-20T11:14:00Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Methods and Results for Quantum Optimal Pulse Control on Superconducting
Qubit Systems [0.0]
In transmon qubit systems, the quantum gate fidelity can be improved by applying control pulses that can minimize the effects of the environmental noise.
We employ physics-guided quantum optimal control strategies to design optimal pulses driving quantum gates on superconducting qubit systems.
We show that the optimized pulses improve the fidelity of the quantum gates, in particular the single-qubit gates.
arXiv Detail & Related papers (2022-02-07T15:03:41Z) - Ultrafast Holonomic Quantum Gates [4.354697470999286]
We propose a nonadiabatic holonomic quantum scheme with detuned interactions on $Delta$-type three-level system.
Our numerical simulations show that the gate robustness is also stronger than previous schemes.
We present an implementation of our proposal on superconducting quantum circuits, with a decoherence-free subspace encoding.
arXiv Detail & Related papers (2021-08-03T14:31:38Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Robust and Fast Holonomic Quantum Gates with Encoding on Superconducting
Circuits [4.354697470999286]
We propose a simplified implementation of universal holonomic quantum gates on superconducting circuits.
Our scheme is more robust than the conventional ones, and thus provides a promising alternative strategy for scalable fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-04-23T13:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.