G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images
- URL: http://arxiv.org/abs/2404.07474v1
- Date: Thu, 11 Apr 2024 04:58:18 GMT
- Title: G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images
- Authors: Zixiong Huang, Qi Chen, Libo Sun, Yifan Yang, Naizhou Wang, Mingkui Tan, Qi Wu,
- Abstract summary: We propose a Geometry-enhanced NeRF (G-NeRF), which seeks to enhance the geometry priors by a geometry-guided multi-view synthesis approach.
To tackle the absence of multi-view supervision for single-view images, we design the depth-aware training approach.
- Score: 45.66479596827045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novel view synthesis aims to generate new view images of a given view image collection. Recent attempts address this problem relying on 3D geometry priors (e.g., shapes, sizes, and positions) learned from multi-view images. However, such methods encounter the following limitations: 1) they require a set of multi-view images as training data for a specific scene (e.g., face, car or chair), which is often unavailable in many real-world scenarios; 2) they fail to extract the geometry priors from single-view images due to the lack of multi-view supervision. In this paper, we propose a Geometry-enhanced NeRF (G-NeRF), which seeks to enhance the geometry priors by a geometry-guided multi-view synthesis approach, followed by a depth-aware training. In the synthesis process, inspired that existing 3D GAN models can unconditionally synthesize high-fidelity multi-view images, we seek to adopt off-the-shelf 3D GAN models, such as EG3D, as a free source to provide geometry priors through synthesizing multi-view data. Simultaneously, to further improve the geometry quality of the synthetic data, we introduce a truncation method to effectively sample latent codes within 3D GAN models. To tackle the absence of multi-view supervision for single-view images, we design the depth-aware training approach, incorporating a depth-aware discriminator to guide geometry priors through depth maps. Experiments demonstrate the effectiveness of our method in terms of both qualitative and quantitative results.
Related papers
- GeoGen: Geometry-Aware Generative Modeling via Signed Distance Functions [22.077366472693395]
We introduce a new generative approach for synthesizing 3D geometry and images from single-view collections.
By employing volumetric rendering using neural radiance fields, they inherit a key limitation: the generated geometry is noisy and unconstrained.
We propose GeoGen, a new SDF-based 3D generative model trained in an end-to-end manner.
arXiv Detail & Related papers (2024-06-06T17:00:10Z) - Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
We propose a novel image editing technique that enables 3D manipulations on single images.
Our method directly leverages powerful image diffusion models trained on a broad spectrum of text-image pairs.
Our method can generate high-quality 3D-aware image edits with large viewpoint transformations and high appearance and shape consistency with the input image.
arXiv Detail & Related papers (2024-03-18T06:18:59Z) - Learning to Render Novel Views from Wide-Baseline Stereo Pairs [26.528667940013598]
We introduce a method for novel view synthesis given only a single wide-baseline stereo image pair.
Existing approaches to novel view synthesis from sparse observations fail due to recovering incorrect 3D geometry.
We propose an efficient, image-space epipolar line sampling scheme to assemble image features for a target ray.
arXiv Detail & Related papers (2023-04-17T17:40:52Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Multi-View Consistent Generative Adversarial Networks for 3D-aware Image
Synthesis [48.33860286920389]
3D-aware image synthesis aims to generate images of objects from multiple views by learning a 3D representation.
Existing approaches lack geometry constraints, hence usually fail to generate multi-view consistent images.
We propose Multi-View Consistent Generative Adrial Networks (MVCGAN) for high-quality 3D-aware image synthesis with geometry constraints.
arXiv Detail & Related papers (2022-04-13T11:23:09Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDER is a novel photometric optimization method that recovers detailed facial geometry from a single image in an unsupervised manner.
In contrast to prior work, SIDER does not rely on any dataset priors and does not require additional supervision from multiple views, lighting changes or ground truth 3D shape.
arXiv Detail & Related papers (2021-08-11T22:34:53Z) - Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and
Visual Geometry [3.970492757288025]
We present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques.
We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only.
arXiv Detail & Related papers (2021-04-28T11:31:35Z) - Learning 3D Face Reconstruction with a Pose Guidance Network [49.13404714366933]
We present a self-supervised learning approach to learning monocular 3D face reconstruction with a pose guidance network (PGN)
First, we unveil the bottleneck of pose estimation in prior parametric 3D face learning methods, and propose to utilize 3D face landmarks for estimating pose parameters.
With our specially designed PGN, our model can learn from both faces with fully labeled 3D landmarks and unlimited unlabeled in-the-wild face images.
arXiv Detail & Related papers (2020-10-09T06:11:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.