論文の概要: Revisiting the double-well problem by deep learning with a hybrid
network
- arxiv url: http://arxiv.org/abs/2104.14657v1
- Date: Sun, 25 Apr 2021 07:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 19:51:06.534522
- Title: Revisiting the double-well problem by deep learning with a hybrid
network
- Title(参考訳): ハイブリッドネットワークを用いた深層学習によるダブルウェル問題の再検討
- Authors: Shurui Li, Jianqin Xu and Jing Qian
- Abstract要約: 本稿では,lstmとresnetの2種類のニューラルネットワークを統合するハイブリッドネットワークを提案する。
このようなハイブリッドネットワークは、空間的または時間的変調が速いシステムにおける協調ダイナミクスの解決に応用できる。
- 参考スコア(独自算出の注目度): 7.308730248177914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving physical problems by deep learning is accurate and efficient mainly
accounting for the use of an elaborate neural network. We propose a novel
hybrid network which integrates two different kinds of neural networks: LSTM
and ResNet, in order to overcome the difficulty met in solving
strongly-oscillating dynamics of the system's time evolution. By taking the
double-well model as an example we show that our new method can benefit from a
pre-learning and verification of the periodicity of frequency by using the LSTM
network, simultaneously making a high-fidelity prediction about the whole
dynamics of system with ResNet, which is impossibly achieved in the case of
single network. Such a hybrid network can be applied for solving cooperative
dynamics in a system with fast spatial or temporal modulations, promising for
realistic oscillation calculations under experimental conditions.
- Abstract(参考訳): 深層学習による物理問題の解決は正確で効率的であり、主に精巧なニューラルネットワークの利用を考慮に入れている。
本稿では,システムの時間進化の強振動ダイナミクスを解くことの難しさを克服するために,LSTMとResNetの2つの異なる種類のニューラルネットワークを統合した新しいハイブリッドネットワークを提案する。
ダブルウェルモデルを例にとると,本手法はlstmネットワークを用いた事前学習と周波数周期性検証の恩恵を受けると同時に,単一ネットワークでは不可能であるresnetを用いたシステム全体のダイナミクスの忠実度を高い精度で予測できることを示す。
このようなハイブリッドネットワークは、高速空間的または時間的変調を持つシステムにおける協調ダイナミクスの解決に応用でき、実験条件下での現実的な振動計算を期待できる。
関連論文リスト
- Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
自己回帰型ニューラルネットワーク、畳み込み型ニューラルネットワーク、リカレントニューラルネットワーク、グラフニューラルネットワークなど、多くのディープニューラルネットワークがIsingモデルの解決に使用されている。
本稿では、スピン変数間の相互作用を効果的に活用できるメッセージパッシング機構を備えた変分自己回帰アーキテクチャを提案する。
新しいネットワークは、アニーリングフレームワークの下で訓練され、いくつかの原型スピンハミルトニアンの解法、特に低温での大きなスピン系において、既存の方法よりも優れている。
論文 参考訳(メタデータ) (2024-04-09T11:27:07Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow Learning Networks (FSNet)は、オンライン時系列予測のための総合的なフレームワークである。
FSNetは、最近の変更への迅速な適応と、同様の古い知識の取得のバランスを取る。
私たちのコードは公開されます。
論文 参考訳(メタデータ) (2022-02-23T18:23:07Z) - Learn to Communicate with Neural Calibration: Scalability and
Generalization [10.775558382613077]
本稿では,将来の無線システム設計のためのスケーラブルで一般化可能なニューラルネットワークキャリブレーションフレームワークを提案する。
提案するニューラルキャリブレーションフレームワークは,大規模マルチインプットマルチアウトプット(MIMO)システムにおける資源管理の課題を解決するために応用される。
論文 参考訳(メタデータ) (2021-10-01T09:00:25Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Hybrid Backpropagation Parallel Reservoir Networks [8.944918753413827]
本稿では,貯水池のランダムな時間的特徴と深層ニューラルネットワークの読み出し能力と,バッチ正規化を併用した新しいハイブリッドネットワークを提案する。
我々の新しいネットワークはLSTMやGRUよりも優れていることを示す。
また, HBP-ESN M-Ring と呼ばれる新しいメタリング構造を組み込むことで, 1つの大きな貯水池に類似した性能を実現し, メモリ容量の最大化を図っている。
論文 参考訳(メタデータ) (2020-10-27T21:03:35Z) - A Principle of Least Action for the Training of Neural Networks [10.342408668490975]
ネットワークの輸送マップに低運動エネルギー偏差バイアスが存在することを示し、このバイアスと一般化性能を関連づける。
本稿では,与えられたタスクの複雑さに自動的に適応する新しい学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-17T15:37:34Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。