論文の概要: Inductive Predictions of Extreme Hydrologic Events in The Wabash River
Watershed
- arxiv url: http://arxiv.org/abs/2104.14658v1
- Date: Sun, 25 Apr 2021 02:26:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 19:51:23.265648
- Title: Inductive Predictions of Extreme Hydrologic Events in The Wabash River
Watershed
- Title(参考訳): ウォバッシュ川流域における極端水文現象の誘導予測
- Authors: Nicholas Majeske, Bidisha Abesh, Chen Zhu, Ariful Azad
- Abstract要約: 我々の単純なモデルはGeoMANのような複雑な注意ネットワークよりもはるかに高速に訓練できることを示す。
また,訓練中に観測された場所とは別の地理的位置において,極端な事象を予測できることを実証した。
この空間的インダクティブな設定により、Wabash Basinデータで訓練されたモデルを使用して、米国および他の地域における極端なイベントを予測できます。
- 参考スコア(独自算出の注目度): 15.963061568077567
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a machine learning method to predict extreme hydrologic events
from spatially and temporally varying hydrological and meteorological data. We
used a timestep reduction technique to reduce the computational and memory
requirements and trained a bidirection LSTM network to predict soil water and
stream flow from time series data observed and simulated over eighty years in
the Wabash River Watershed. We show that our simple model can be trained much
faster than complex attention networks such as GeoMAN without sacrificing
accuracy. Based on the predicted values of soil water and stream flow, we
predict the occurrence and severity of extreme hydrologic events such as
droughts. We also demonstrate that extreme events can be predicted in
geographical locations separate from locations observed during the training
process. This spatially-inductive setting enables us to predict extreme events
in other areas in the US and other parts of the world using our model trained
with the Wabash Basin data.
- Abstract(参考訳): 本研究では,水文データと気象データとの時間的変動から,水文現象を予測する機械学習手法を提案する。
ワバッシュ川流域の80年以上にわたって観測・シミュレーションされた時系列データから,数値計算と記憶の必要量を削減し,双方向lstmネットワークを訓練し,土壌水と流れの予測を行った。
我々の単純なモデルは、GeoMANのような複雑な注意ネットワークよりも、精度を犠牲にすることなく、はるかに高速に訓練できることを示す。
土壌水および河川流量の予測値に基づいて,干ばつなどの極端な水文現象の発生と深刻度を予測した。
また、トレーニングプロセス中に観測された位置とは別の地理的な場所で極端な事象を予測できることを実証した。
この空間的インダクティブな設定により,ワバッシュ盆地データを用いてトレーニングしたモデルを用いて,米国および世界の他の地域における極端な事象を予測できる。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
水量の水量予測は、水管理、洪水予測、洪水制御など様々な用途に有用である。
本稿では,GCRN(Graph Convolution Recurrent Neural Network)エンコーダデコーダの隠れ状態を増大させる時間予測モデルを提案する。
本稿では,河川,河川,湖上のカナダステーションのネットワークから,新たな水流のベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-12-10T18:23:40Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
本研究では,内陸海域における水流強度を予測するための機械学習によるアプローチを提案する。
我々は高密度水流強度予測の課題に最初に取り組みました。
論文 参考訳(メタデータ) (2023-04-04T09:28:36Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Heterogeneous Stream-reservoir Graph Networks with Data Assimilation [3.312798619476657]
河川の水温の正確な予測は、河川の生物地球化学的および生態学的過程を監視し、理解するために重要である。
本稿では,ストリーム・リザーバ・ネットワークを基盤とする相互作用プロセスを表現するため,不均一なリカレントグラフモデルを提案する。
貯水池の放水量は一定の貯水池では利用できないため,貯水池の放水に伴う予測バイアスを補正するデータ同化機構を開発する。
論文 参考訳(メタデータ) (2021-10-11T01:47:16Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
我々は,水文降雨要素と流出モデルに着目し,洪水の予測と流れの予測に応用する。
このガイドは、データサイエンティストが問題や水文学的な概念、そしてその過程で現れる詳細を理解するのを助けることを目的としています。
論文 参考訳(メタデータ) (2020-06-05T08:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。