Cleaning Label Noise with Clusters for Minimally Supervised Anomaly
Detection
- URL: http://arxiv.org/abs/2104.14770v1
- Date: Fri, 30 Apr 2021 06:03:24 GMT
- Title: Cleaning Label Noise with Clusters for Minimally Supervised Anomaly
Detection
- Authors: Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, Arif Mahmood,
Seung-Ik Lee
- Abstract summary: We formulate a weakly supervised anomaly detection method that is trained using only video-level labels.
The proposed method yields 78.27% and 84.16% frame-level AUC on UCF-crime and ShanghaiTech datasets respectively.
- Score: 26.062659852373653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning to detect real-world anomalous events using video-level annotations
is a difficult task mainly because of the noise present in labels. An anomalous
labelled video may actually contain anomaly only in a short duration while the
rest of the video can be normal. In the current work, we formulate a weakly
supervised anomaly detection method that is trained using only video-level
labels. To this end, we propose to utilize binary clustering which helps in
mitigating the noise present in the labels of anomalous videos. Our formulation
encourages both the main network and the clustering to complement each other in
achieving the goal of weakly supervised training. The proposed method yields
78.27% and 84.16% frame-level AUC on UCF-crime and ShanghaiTech datasets
respectively, demonstrating its superiority over existing state-of-the-art
algorithms.
Related papers
- A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised
Video Anomaly Detection [4.494911384096143]
Detection of anomalous events in videos is an important problem in applications such as surveillance.
We propose a simple-but-effective two-stage pseudo-label generation framework that produces segment-level (normal/anomaly) pseudo-labels.
The proposed coarse-to-fine pseudo-label generator employs carefully-designed hierarchical divisive clustering and statistical hypothesis testing.
arXiv Detail & Related papers (2023-10-26T17:59:19Z) - Weakly-Supervised Video Anomaly Detection with Snippet Anomalous
Attention [22.985681654402153]
We propose an Anomalous Attention mechanism for weakly-supervised anomaly detection.
Our approach takes into account snippet-level encoded features without the supervision of pseudo labels.
arXiv Detail & Related papers (2023-09-28T10:03:58Z) - Clustering Aided Weakly Supervised Training to Detect Anomalous Events
in Surveillance Videos [20.368114998124295]
We propose a weakly supervised anomaly detection system which has multiple contributions including a random batch selection mechanism.
A clustering loss block is proposed to mitigate the label noise and to improve the representation learning for the anomalous and normal regions.
Extensive analysis of the proposed approach is provided using three popular anomaly detection datasets.
arXiv Detail & Related papers (2022-03-25T15:18:19Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
We propose a supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection.
Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time.
We show that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework.
arXiv Detail & Related papers (2021-11-16T17:28:46Z) - MIST: Multiple Instance Self-Training Framework for Video Anomaly
Detection [76.80153360498797]
We develop a multiple instance self-training framework (MIST) to efficiently refine task-specific discriminative representations.
MIST is composed of 1) a multiple instance pseudo label generator, which adapts a sparse continuous sampling strategy to produce more reliable clip-level pseudo labels, and 2) a self-guided attention boosted feature encoder.
Our method performs comparably to or even better than existing supervised and weakly supervised methods, specifically obtaining a frame-level AUC 94.83% on ShanghaiTech.
arXiv Detail & Related papers (2021-04-04T15:47:14Z) - CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy
Suppression for Anomalous Event Detection [20.368114998124295]
We propose a weakly supervised anomaly detection method which has manifold contributions.
The proposed method obtains83.03% and 89.67% frame-level AUC performance on the UCF Crime and ShanghaiTech datasets respectively.
arXiv Detail & Related papers (2020-11-24T13:27:40Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - A Self-Reasoning Framework for Anomaly Detection Using Video-Level
Labels [17.615297975503648]
Alous event detection in surveillance videos is a challenging and practical research problem among image and video processing community.
We propose a weakly supervised anomaly detection framework based on deep neural networks which is trained in a self-reasoning fashion using only video-level labels.
The proposed framework has been evaluated on publicly available real-world anomaly detection datasets including UCF-crime, ShanghaiTech and Ped2.
arXiv Detail & Related papers (2020-08-27T02:14:15Z) - Uncertainty-Aware Weakly Supervised Action Detection from Untrimmed
Videos [82.02074241700728]
In this paper, we present a prohibitive-level action recognition model that is trained with only video-frame labels.
Our method per person detectors have been trained on large image datasets within Multiple Instance Learning framework.
We show how we can apply our method in cases where the standard Multiple Instance Learning assumption, that each bag contains at least one instance with the specified label, is invalid.
arXiv Detail & Related papers (2020-07-21T10:45:05Z) - Labelling unlabelled videos from scratch with multi-modal
self-supervision [82.60652426371936]
unsupervised labelling of a video dataset does not come for free from strong feature encoders.
We propose a novel clustering method that allows pseudo-labelling of a video dataset without any human annotations.
An extensive analysis shows that the resulting clusters have high semantic overlap to ground truth human labels.
arXiv Detail & Related papers (2020-06-24T12:28:17Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.