論文の概要: Scholarly AI system diagrams as an access point to mental models
- arxiv url: http://arxiv.org/abs/2104.14811v1
- Date: Fri, 30 Apr 2021 07:55:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 21:53:11.774957
- Title: Scholarly AI system diagrams as an access point to mental models
- Title(参考訳): メンタルモデルのアクセスポイントとしてのAIシステムダイアグラム
- Authors: Guy Clarke Marshall and Caroline Jay and Andre Freitas
- Abstract要約: 人工知能(AI)システムのような複雑なシステムは、多くの相互関連コンポーネントで構成されている。
これらのシステムを表現するためには、コンポーネント間の関係を示すことが不可欠です。
図は「関係のアイコン」として、複雑なシステムを示すための一般的な媒体です。
- 参考スコア(独自算出の注目度): 6.233820957059352
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Complex systems, such as Artificial Intelligence (AI) systems, are comprised
of many interrelated components. In order to represent these systems,
demonstrating the relations between components is essential. Perhaps because of
this, diagrams, as "icons of relation", are a prevalent medium for signifying
complex systems. Diagrams used to communicate AI system architectures are
currently extremely varied. The diversity in diagrammatic conceptual modelling
choices provides an opportunity to gain insight into the aspects which are
being prioritised for communication. In this philosophical exploration of AI
systems diagrams, we integrate theories of conceptual models, communication
theory, and semiotics. We discuss consequences of standardised diagrammatic
languages for AI systems, concluding that while we expect engineers
implementing systems to benefit from standards, researchers would have a larger
benefit from guidelines.
- Abstract(参考訳): 人工知能(AI)システムのような複雑なシステムは、多くの関連コンポーネントから構成されている。
これらのシステムを表現するためには、コンポーネント間の関係を示すことが不可欠である。
このためか、ダイアグラムは「関係のイコン」として、複雑なシステムを表すための一般的な媒体である。
AIシステムアーキテクチャを伝えるためのダイアグラムは現在、非常に多様である。
図式的概念モデリングの選択の多様性は、コミュニケーションのために優先順位付けされている側面について洞察を得る機会を提供する。
このAIシステム図の哲学的な探索では、概念モデル、コミュニケーション理論、セミオティックスの理論を統合する。
我々は、AIシステムのための標準化された図式言語の結果について議論し、システムを実装するエンジニアが標準の恩恵を受けるだろうが、研究者はガイドラインの恩恵を受けるだろうと結論付けた。
関連論文リスト
- The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems [0.0]
AI倫理の原則と実践の間にはまだギャップがある。
AI倫理を運用しようとする組織が直面する大きな障害のひとつは、明確に定義された材料スコープの欠如である。
論文 参考訳(メタデータ) (2024-07-07T12:16:01Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems [69.50862982117127]
学際的なグラフィカルモデリング言語で、すべての分野に理解可能なシステムとして、AIアプリケーションのモデリングを可能にすることは、まだ存在しない。
本稿では,システムレベルでの自動化システムにおけるAIアプリケーションの一貫した,理解可能なモデリングを可能にするグラフィカルモデリング言語を提案する。
論文 参考訳(メタデータ) (2023-06-20T12:06:41Z) - Conceptual Modeling and Artificial Intelligence: A Systematic Mapping
Study [0.5156484100374059]
概念モデリング(CM)では、人間は理解とコミュニケーションの手段として現実の抜粋を抽象的に表現し、機械による処理を行う。
近年、CMとAIの連携のトレンドが生まれている。
本研究は,この学際研究分野がどのように構成され,相互利益は,学間研究と今後の研究の方向性によって得られるかを示す。
論文 参考訳(メタデータ) (2023-03-12T21:23:46Z) - A Compositional Approach to Creating Architecture Frameworks with an
Application to Distributed AI Systems [16.690434072032176]
構成的思考が複雑なシステムのためのアーキテクチャフレームワークの作成と管理のルールをいかに提供できるかを示す。
論文の目的は、AIシステム特有の視点やアーキテクチャモデルを提供することではなく、既存の、または新しく作成された視点で一貫したフレームワークを構築する方法についてのガイドラインを提供することである。
論文 参考訳(メタデータ) (2022-12-27T18:05:02Z) - Core and Periphery as Closed-System Precepts for Engineering General
Intelligence [62.997667081978825]
AIシステムの入力が出力から独立するかどうかは不明であり、従ってAIシステムが従来のコンポーネントとして扱われるかどうかは不明である。
本稿では, 工学的汎用知能は, コアと周辺と呼ばれる, 新たな汎用システム規範を必要とすることを示唆する。
論文 参考訳(メタデータ) (2022-08-04T18:20:25Z) - Conceptual Modeling and Artificial Intelligence: Mutual Benefits from
Complementary Worlds [0.0]
これまでのところ、主に分離されたCMとAIの分野にアプローチする2つの交差点に取り組むことに興味があります。
このワークショップでは、(一)概念モデリング(CM)がAIにどのような貢献ができるのか、(一)その逆の方法で、多様体相互利益を実現することができるという仮定を取り入れている。
論文 参考訳(メタデータ) (2021-10-16T18:42:09Z) - Conceptualization and Framework of Hybrid Intelligence Systems [0.0]
この記事では、ハイブリッドインテリジェンスシステムの正確な定義と、他の同様の概念との関係を説明します。
すべてのAIシステムはハイブリッドインテリジェンスシステムであるため、そのようなシステムのライフサイクルのあらゆる段階で人間の要因を調べる必要があります。
論文 参考訳(メタデータ) (2020-12-11T06:42:06Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。