論文の概要: A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems
- arxiv url: http://arxiv.org/abs/2306.11767v1
- Date: Tue, 20 Jun 2023 12:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 16:25:02.649004
- Title: A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems
- Title(参考訳): 自動化システムにおける人工知能応用のためのグラフィカルモデリング言語
- Authors: Marvin Schieseck, Philip Topalis, Alexander Fay
- Abstract要約: 学際的なグラフィカルモデリング言語で、すべての分野に理解可能なシステムとして、AIアプリケーションのモデリングを可能にすることは、まだ存在しない。
本稿では,システムレベルでの自動化システムにおけるAIアプリケーションの一貫した,理解可能なモデリングを可能にするグラフィカルモデリング言語を提案する。
- 参考スコア(独自算出の注目度): 69.50862982117127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) applications in automation systems are usually
distributed systems whose development and integration involve several experts.
Each expert uses its own domain-specific modeling language and tools to model
the system elements. An interdisciplinary graphical modeling language that
enables the modeling of an AI application as an overall system comprehensible
to all disciplines does not yet exist. As a result, there is often a lack of
interdisciplinary system understanding, leading to increased development,
integration, and maintenance efforts. This paper therefore presents a graphical
modeling language that enables consistent and understandable modeling of AI
applications in automation systems at system level. This makes it possible to
subdivide individual subareas into domain specific subsystems and thus reduce
the existing efforts.
- Abstract(参考訳): 自動化システムにおける人工知能(AI)アプリケーションは、通常、開発と統合が複数の専門家を含む分散システムである。
各エキスパートは独自のドメイン固有のモデリング言語とツールを使ってシステム要素をモデリングします。
すべての分野に理解可能なシステム全体としてのaiアプリケーションのモデリングを可能にする学際的なグラフィカルモデリング言語はまだ存在しません。
結果として、学際的なシステム理解が欠如し、開発、統合、保守作業が増加することが多い。
そこで本稿では,システムレベルでの自動化システムにおけるAIアプリケーションの一貫した,理解可能なモデリングを可能にするグラフィカルモデリング言語を提案する。
これにより、個々のサブ領域をドメイン固有のサブシステムに分割し、既存の労力を減らすことができる。
関連論文リスト
- A Formal Model for Artificial Intelligence Applications in Automation Systems [41.19948826527649]
本稿では,自動化システムにおけるAIアプリケーションの明確かつ構造化されたドキュメンテーションを提供するために,標準を用いた形式モデルを提案する。
自動化システム(AIAS)における人工知能の情報モデルは、設計パターンを利用して、自動化システムとAIソフトウェアの様々な側面をマッピングし、リンクする。
論文 参考訳(メタデータ) (2024-07-03T15:05:32Z) - Generative AI Systems: A Systems-based Perspective on Generative AI [12.400966570867322]
大規模言語モデル(LLM)は、自然言語を用いた機械との通信を可能にすることで、AIシステムに革命をもたらした。
ジェネレーティブAI(GenAI)の最近の進歩は、マルチモーダルシステムとしてLLMを使うことに大きな期待を示している。
本稿では,ジェネレーティブAIシステムにおける新たな研究の方向性を探求し,述べることを目的とする。
論文 参考訳(メタデータ) (2024-06-25T12:51:47Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
巨大な言語モデル(LM)は、自然言語ベースの知識タスクのゲートウェイとして機能する、AIの新しい時代を支えている。
離散的な知識と推論モジュールによって補完される、複数のニューラルモデルによる柔軟なアーキテクチャを定義する。
本稿では,MRKL(Modular Reasoning, Knowledge and Language)システムと呼ばれる,このニューロシンボリックアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2022-05-01T11:01:28Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Workflow Automation for Cyber Physical System Development Processes [1.6735240552964108]
サイバー物理システム(CPS)の開発には、多くの分野の専門知識を持つ開発者間の密接な相互作用が必要である。
複雑なCPS開発プロセスの自動化のためのワークフローモデリング言語を導入する。
保証ベースの学習対応CPSツールチェーンでこれらのモデルを実行するためのプラットフォームを実装した。
論文 参考訳(メタデータ) (2020-04-12T17:32:05Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。