論文の概要: Interpretable Semantic Photo Geolocalization
- arxiv url: http://arxiv.org/abs/2104.14995v1
- Date: Fri, 30 Apr 2021 13:28:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 13:37:15.732159
- Title: Interpretable Semantic Photo Geolocalization
- Title(参考訳): 解釈可能なセマンティック光ジオローカライゼーション
- Authors: Jonas Theiner, Eric M\"uller-Budack, Ralph Ewerth
- Abstract要約: ジオローカリゼーションモデルの解釈性を改善するために,2つのコントリビューションを提案する。
本稿では,予測の理解を直感的に向上させる新しいセマンティックパーティショニング手法を提案する。
また,ある予測のための意味的視覚概念の重要性を評価するための新しい指標も導入する。
- 参考スコア(独自算出の注目度): 4.286838964398275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planet-scale photo geolocalization is the complex task of estimating the
location depicted in an image solely based on its visual content. Due to the
success of convolutional neural networks (CNNs), current approaches achieve
super-human performance. However, previous work has exclusively focused on
optimizing geolocalization accuracy. Moreover, due to the black-box property of
deep learning systems, their predictions are difficult to validate for humans.
State-of-the-art methods treat the task as a classification problem, where the
choice of the classes, that is the partitioning of the world map, is the key
for success. In this paper, we present two contributions in order to improve
the interpretability of a geolocalization model: (1) We propose a novel,
semantic partitioning method which intuitively leads to an improved
understanding of the predictions, while at the same time state-of-the-art
results are achieved for geolocational accuracy on benchmark test sets; (2) We
introduce a novel metric to assess the importance of semantic visual concepts
for a certain prediction to provide additional interpretable information, which
allows for a large-scale analysis of already trained models.
- Abstract(参考訳): プラネットスケールフォトジオローカライズ(planet-scale photo geolocalization)は、その視覚コンテンツのみに基づいて画像に描かれた位置を推定する複雑なタスクである。
畳み込みニューラルネットワーク(CNN)の成功により、現在のアプローチは超人的性能を実現する。
しかし、以前の研究は局所化の精度の最適化に重点を置いてきた。
さらに,深層学習システムのブラックボックス特性から,その予測は人間にとって検証が難しい。
state-of-the-artメソッドはタスクを分類問題として扱い、クラスの選択、すなわち世界地図の分割が成功の鍵となる。
In this paper, we present two contributions in order to improve the interpretability of a geolocalization model: (1) We propose a novel, semantic partitioning method which intuitively leads to an improved understanding of the predictions, while at the same time state-of-the-art results are achieved for geolocational accuracy on benchmark test sets; (2) We introduce a novel metric to assess the importance of semantic visual concepts for a certain prediction to provide additional interpretable information, which allows for a large-scale analysis of already trained models.
関連論文リスト
- TIDE: Training Locally Interpretable Domain Generalization Models Enables Test-time Correction [14.396966854171273]
単一ソース領域の一般化の問題を考える。
既存の手法は通常、訓練中に様々な領域を合成的にカバーする広範囲な拡張に依存している。
予測において,そのような局所的な概念を活用するためにモデルを補完する手法を提案する。
論文 参考訳(メタデータ) (2024-11-25T08:46:37Z) - Sampling Based On Natural Image Statistics Improves Local Surrogate
Explainers [111.31448606885672]
代理説明器は、モデルが予測にどのように到着するかをさらに理解するために、ポストホック解釈法として人気がある。
そこで本研究では,(1)局所領域のサンプリング方法を変更すること,(2)自然画像の分布特性を知覚的指標を用いて伝達すること,の2つの手法を提案する。
論文 参考訳(メタデータ) (2022-08-08T08:10:13Z) - Point-Level Region Contrast for Object Detection Pre-Training [147.47349344401806]
本稿では,物体検出作業のための自己教師付き事前学習手法である点レベル領域コントラストを提案する。
提案手法は,異なる領域から個々の点対を直接抽出することにより,コントラスト学習を行う。
領域ごとの集約表現と比較すると,入力領域の品質の変化に対して,我々のアプローチはより堅牢である。
論文 参考訳(メタデータ) (2022-02-09T18:56:41Z) - Learning Semantics for Visual Place Recognition through Multi-Scale
Attention [14.738954189759156]
本稿では,データの視覚的外観と意味的内容から,ロバストなグローバルな埋め込みを学習する最初のVPRアルゴリズムを提案する。
さまざまなシナリオの実験により、この新しいアプローチが検証され、最先端の手法に対するパフォーマンスが実証される。
論文 参考訳(メタデータ) (2022-01-24T14:13:12Z) - Leveraging EfficientNet and Contrastive Learning for Accurate
Global-scale Location Estimation [15.633461635276337]
地球規模の画像ジオロケーションのための混合分類検索方式を提案する。
このアプローチは、4つの公開データセットで非常に競争力のあるパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-05-17T07:18:43Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Neural networks for semantic segmentation of historical city maps:
Cross-cultural performance and the impact of figurative diversity [0.0]
畳み込みニューラルネットワークに基づく歴史都市地図のセマンティックセグメンテーションモデルを提案する。
これらのネットワークは、非常に大きな比喩的多様性のマップデータを効率よく意味的にセグメント化できることを示す。
論文 参考訳(メタデータ) (2021-01-29T09:08:12Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。