論文の概要: TIDE: Training Locally Interpretable Domain Generalization Models Enables Test-time Correction
- arxiv url: http://arxiv.org/abs/2411.16788v1
- Date: Mon, 25 Nov 2024 08:46:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:35:35.830000
- Title: TIDE: Training Locally Interpretable Domain Generalization Models Enables Test-time Correction
- Title(参考訳): TIDE: テスト時間補正を可能にする局所解釈可能なドメイン一般化モデルのトレーニング
- Authors: Aishwarya Agarwal, Srikrishna Karanam, Vineet Gandhi,
- Abstract要約: 単一ソース領域の一般化の問題を考える。
既存の手法は通常、訓練中に様々な領域を合成的にカバーする広範囲な拡張に依存している。
予測において,そのような局所的な概念を活用するためにモデルを補完する手法を提案する。
- 参考スコア(独自算出の注目度): 14.396966854171273
- License:
- Abstract: We consider the problem of single-source domain generalization. Existing methods typically rely on extensive augmentations to synthetically cover diverse domains during training. However, they struggle with semantic shifts (e.g., background and viewpoint changes), as they often learn global features instead of local concepts that tend to be domain invariant. To address this gap, we propose an approach that compels models to leverage such local concepts during prediction. Given no suitable dataset with per-class concepts and localization maps exists, we first develop a novel pipeline to generate annotations by exploiting the rich features of diffusion and large-language models. Our next innovation is TIDE, a novel training scheme with a concept saliency alignment loss that ensures model focus on the right per-concept regions and a local concept contrastive loss that promotes learning domain-invariant concept representations. This not only gives a robust model but also can be visually interpreted using the predicted concept saliency maps. Given these maps at test time, our final contribution is a new correction algorithm that uses the corresponding local concept representations to iteratively refine the prediction until it aligns with prototypical concept representations that we store at the end of model training. We evaluate our approach extensively on four standard DG benchmark datasets and substantially outperform the current state-ofthe-art (12% improvement on average) while also demonstrating that our predictions can be visually interpreted
- Abstract(参考訳): 単一ソース領域の一般化の問題を考える。
既存の手法は通常、訓練中に様々な領域を合成的にカバーする広範囲な拡張に依存している。
しかし、それらは意味的なシフト(背景や視点の変化など)に苦しむため、ドメイン不変であるようなローカルな概念ではなく、グローバルな特徴を学ぶことが多い。
このギャップに対処するため,予測中の局所的な概念をモデルに補完する手法を提案する。
クラスごとのコンセプトやローカライズマップが存在しない適切なデータセットが存在しないことを前提として,拡散モデルと大規模言語モデルのリッチな特徴を活用してアノテーションを生成する新しいパイプラインを最初に開発する。
私たちの次の革新は、モデルが適切な概念単位の領域にフォーカスすることを保証する概念の相違をなくす新しいトレーニングスキームであるTIDEと、ドメイン不変の概念表現の学習を促進するローカルな概念の対照的な損失である。
これは堅牢なモデルを提供するだけでなく、予測された概念の相性マップを使って視覚的に解釈することもできる。
テスト時にこれらのマップが与えられた場合、最終的なコントリビューションは、モデルトレーニングの終了時に格納するプロトタイプの概念表現と整合するまで、対応する局所概念表現を使用して予測を反復的に洗練する新しい補正アルゴリズムである。
提案手法を4つの標準DGベンチマークデータセットで広範囲に評価し、現在の最先端(平均12%の改善)を著しく上回りながら、我々の予測を視覚的に解釈できることを実証した。
関連論文リスト
- Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
本稿では,すべての中間層を経由した入力から,データセット全体の最終的な出力まで,経路全体をトレースする新しい手法を提案する。
本稿では,PFV(Pointwise Feature Vectors)とERF(Effective Receptive Fields)を用いて,モデル埋め込みを解釈可能な概念ベクトルに分解する。
そして,汎用統合勾配(GIG)を用いて概念ベクトル間の関係を計算し,モデル行動の包括的,データセットワイドな解析を可能にする。
論文 参考訳(メタデータ) (2024-09-03T05:19:35Z) - Locally Testing Model Detections for Semantic Global Concepts [3.112979958793927]
本稿では,グローバルな概念エンコーディングを単一ネットワーク入力の局所処理にリンクするフレームワークを提案する。
提案手法は,セマンティック概念のモデル内符号化を完全に網羅する利点がある。
その結果, 個々のグローバルな概念エンコーディングの局所的認識と使用法に大きな違いが認められた。
論文 参考訳(メタデータ) (2024-05-27T12:52:45Z) - Self-Supervised Learning for Covariance Estimation [3.04585143845864]
推論時に局所的に適用されるニューラルネットワークをグローバルに学習することを提案する。
アーキテクチャは、一般的な注目メカニズムに基づいている。
基礎モデルとして事前訓練し、レーダーやハイパースペクトル画像の適応目標検出など、様々な下流タスクに再利用することができる。
論文 参考訳(メタデータ) (2024-03-13T16:16:20Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - Prompting Diffusion Representations for Cross-Domain Semantic
Segmentation [101.04326113360342]
拡散事前学習は、セマンティックセグメンテーションのための並外れた領域一般化結果を達成する。
本研究では,シーンプロンプトとプロンプトランダム化戦略を導入し,セグメンテーションヘッドを訓練する際に,ドメイン不変情報をさらに混乱させる。
論文 参考訳(メタデータ) (2023-07-05T09:28:25Z) - Sampling Based On Natural Image Statistics Improves Local Surrogate
Explainers [111.31448606885672]
代理説明器は、モデルが予測にどのように到着するかをさらに理解するために、ポストホック解釈法として人気がある。
そこで本研究では,(1)局所領域のサンプリング方法を変更すること,(2)自然画像の分布特性を知覚的指標を用いて伝達すること,の2つの手法を提案する。
論文 参考訳(メタデータ) (2022-08-08T08:10:13Z) - Consistent Explanations by Contrastive Learning [15.80891456718324]
Grad-CAMのようなポストホック評価技術により、人間は特定のネットワーク決定に責任のある空間領域を検査することができる。
より一貫した説明を生み出すためにモデルをトレーニングするための新しいトレーニング手法を提案する。
提案手法であるContrastive Grad-CAM Consistency (CGC) は,人間のアノテーションと一致したGrad-CAM解釈熱マップを生成する。
論文 参考訳(メタデータ) (2021-10-01T16:49:16Z) - Interpretable Semantic Photo Geolocalization [4.286838964398275]
ジオローカリゼーションモデルの解釈性を改善するために,2つのコントリビューションを提案する。
本稿では,予測の理解を直感的に向上させる新しいセマンティックパーティショニング手法を提案する。
また,ある予測のための意味的視覚概念の重要性を評価するための新しい指標も導入する。
論文 参考訳(メタデータ) (2021-04-30T13:28:18Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Learning to Learn with Variational Information Bottleneck for Domain
Generalization [128.90691697063616]
ドメイン一般化モデルは、これまで見つからなかった領域に一般化することを学ぶが、予測の不確実性とドメインシフトに悩まされる。
ドメイン一般化のための確率論的メタラーニングモデルを導入し、ドメイン間で共有されるパラメータを分布としてモデル化する。
ドメインシフトに対処するため、メタ変動情報ボトルネックという提案原則を用いてドメイン不変表現を学習し、メタVIBと呼ぶ。
論文 参考訳(メタデータ) (2020-07-15T12:05:52Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
説明は、深い分類網が決定を下す視覚的証拠の領域として定義される。
トレーニング戦略は周期的な正当性に基づくフィードバックを強制し、モデルが地中真実に直接対応する画像領域に焦点を合わせることを奨励する。
論文 参考訳(メタデータ) (2020-03-13T22:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。