論文の概要: Memory-Efficient Deep Learning Inference in Trusted Execution
Environments
- arxiv url: http://arxiv.org/abs/2104.15109v1
- Date: Fri, 30 Apr 2021 16:48:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 13:26:02.134026
- Title: Memory-Efficient Deep Learning Inference in Trusted Execution
Environments
- Title(参考訳): 信頼された実行環境におけるメモリ効率の高いディープラーニング推論
- Authors: Jean-Baptiste Truong, William Gallagher, Tian Guo, Robert J. Walls
- Abstract要約: 本研究では,信頼された実行環境(TEE)におけるディープニューラルネットワークの実行における2つの重要なボトルネックを緩和する手法を同定し,提案する。
本研究では,(ii)階層出力がTEE安全なメモリに比べて大きい場合に一貫した実行時間を提供し,(ii)畳み込み層のメモリフットプリントを大幅に削減する,y平面分割を分割する新しいスキームを提案する。
本評価では,1.09X から 2X までの遅延オーバーヘッドを幅広い TEE サイズに適用し,非修正実装では TEE 内部で実行時に最大 26X の遅延を発生させた。
- 参考スコア(独自算出の注目度): 4.409787110112077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study identifies and proposes techniques to alleviate two key
bottlenecks to executing deep neural networks in trusted execution environments
(TEEs): page thrashing during the execution of convolutional layers and the
decryption of large weight matrices in fully-connected layers. For the former,
we propose a novel partitioning scheme, y-plane partitioning, designed to (ii)
provide consistent execution time when the layer output is large compared to
the TEE secure memory; and (ii) significantly reduce the memory footprint of
convolutional layers. For the latter, we leverage quantization and compression.
In our evaluation, the proposed optimizations incurred latency overheads
ranging from 1.09X to 2X baseline for a wide range of TEE sizes; in contrast,
an unmodified implementation incurred latencies of up to 26X when running
inside of the TEE.
- Abstract(参考訳): 本研究では、畳み込み層の実行中のページスラッシングと、完全に接続された層における大きな重み行列の復号化という、信頼された実行環境(TEE)におけるディープニューラルネットワーク実行における2つの重要なボトルネックを解消する技術を提案する。
前者に対し,新たな分割方式であるy平面分割方式を提案し,(ii)teeセキュアメモリと比較して,レイヤ出力が大きい場合に一貫した実行時間を提供するように設計し,(ii)畳み込み層のメモリフットプリントを大幅に削減した。
後者では量子化と圧縮を利用する。
提案手法では、teeサイズで1.09倍から2倍のレイテンシオーバヘッドを発生させ、それに対してtee内部で実行した場合、未修正の実装では最大26倍のレイテンシを発生させた。
関連論文リスト
- LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs [111.12010207132204]
UIO-LLMsは、長いコンテキスト設定下でのメモリ拡張トランスフォーマーの漸進的な最適化手法である。
本稿では,TBPTTアルゴリズムを用いて学習過程を改良する。
UIO-LLMは、Llama2-7b-chatのコンテキストウィンドウを4Kから100Kトークンに、2%の追加パラメータで拡張するなど、長いコンテキストを扱うことに成功した。
論文 参考訳(メタデータ) (2024-06-26T08:44:36Z) - EcoTTA: Memory-Efficient Continual Test-time Adaptation via
Self-distilled Regularization [71.70414291057332]
TTAは主にメモリ制限のあるエッジデバイス上で実行される。
長期的な適応は、しばしば破滅的な忘れとエラーの蓄積につながる。
本稿では,凍結したオリジナルネットワークを対象ドメインに適応させる軽量なメタネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T13:05:30Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep-FSMNのようなディープニューラルネットワークはキーワードスポッティング(KWS)アプリケーションのために広く研究されている。
我々は、KWS、すなわちBiFSMNv2のための強力で効率的なバイナリニューラルネットワークを提示し、それを実ネットワーク精度のパフォーマンスにプッシュする。
小型アーキテクチャと最適化されたハードウェアカーネルの利点により、BiFSMNv2は25.1倍のスピードアップと20.2倍のストレージ節約を実現できる。
論文 参考訳(メタデータ) (2022-11-13T18:31:45Z) - Self-Attentive Pooling for Efficient Deep Learning [6.822466048176652]
そこで本研究では,標準プーリング層に対するドロップイン代替として使用可能な,非局所的な自己係留型プーリング手法を提案する。
我々は、ImageNet上のMobileNet-V2の様々な変種に対する既存のプール技術のテスト精度を平均1.2%上回る。
提案手法は,イソメモリフットプリントを用いたSOTA技術と比較して1.43%高い精度を実現している。
論文 参考訳(メタデータ) (2022-09-16T00:35:14Z) - Distributed Deep Learning Inference Acceleration using Seamless
Collaboration in Edge Computing [93.67044879636093]
本稿では,コラボレーティブエッジコンピューティングにおける分散畳み込みニューラルネットワーク(CNN)を用いた推論高速化について検討する。
本研究では,第2エッジサーバ(ES)上のサブタスクの重なり合うゾーンをホストES上で実行し,HALPと命名した新しいタスク協調方式を設計する。
実験結果から,GTX 1080TIとJETSON AGX Xavierでは,単一のタスクに対して1.7-2.0x,バッチ毎に1.7-1.8x,バッチ毎に1.7-1.8x,VGG-16では1.7-2.0xのCNN推論を高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-22T18:39:09Z) - Learnable Mixed-precision and Dimension Reduction Co-design for
Low-storage Activation [9.838135675969026]
深層畳み込みニューラルネットワーク(CNN)は多くの眼球運動の結果を得た。
リソース制約のあるエッジデバイスにCNNをデプロイすることは、推論中に大きな中間データを送信するためのメモリ帯域幅の制限によって制限される。
チャネルをグループに分割し,その重要度に応じて圧縮ポリシーを割り当てる,学習可能な混合精度・次元縮小協調設計システムを提案する。
論文 参考訳(メタデータ) (2022-07-16T12:53:52Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMNは、KWSのための正確かつ極効率のバイナリニューラルネットワークである。
実世界のエッジハードウェアにおいて,BiFSMNは22.3倍の高速化と15.5倍のストレージ節約を実現可能であることを示す。
論文 参考訳(メタデータ) (2022-02-14T05:16:53Z) - MAFAT: Memory-Aware Fusing and Tiling of Neural Networks for Accelerated
Edge Inference [1.7894377200944507]
機械学習ネットワークは、利用可能なメモリを容易に越えることができ、OSの過度なスワップによってレイテンシが増加する。
本稿では,メモリ使用量予測器と探索アルゴリズムを組み合わせることで,最適化されたファジングとタイリングの構成を提供する。
その結果、我々のアプローチはメモリの半分以下で実行でき、メモリの厳しい制約下では最大2.78の高速化を実現している。
論文 参考訳(メタデータ) (2021-07-14T19:45:49Z) - Multi-Task Network Pruning and Embedded Optimization for Real-time
Deployment in ADAS [0.0]
カメラベースのディープラーニングアルゴリズムは、自動運転システムにおける認識にますます必要である。
自動車業界からの制約は、限られた計算リソースで組み込みシステムを課すことでCNNの展開に挑戦します。
商用プロトタイププラットフォーム上で,このような条件下でマルチタスクCNNネットワークを埋め込む手法を提案する。
論文 参考訳(メタデータ) (2021-01-19T19:29:38Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
シークエンシャルレコメンデーションシステム(SRS)は,ユーザの動的関心を捉え,高品質なレコメンデーションを生成する上で重要な技術となっている。
CpRecと呼ばれる圧縮されたシーケンシャルレコメンデーションフレームワークを提案する。
大規模なアブレーション研究により、提案したCpRecは実世界のSRSデータセットにおいて最大4$sim$8倍の圧縮速度を達成できることを示した。
論文 参考訳(メタデータ) (2020-04-21T08:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。