論文の概要: Seesaw: High-throughput LLM Inference via Model Re-sharding
- arxiv url: http://arxiv.org/abs/2503.06433v1
- Date: Sun, 09 Mar 2025 04:14:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:30.648794
- Title: Seesaw: High-throughput LLM Inference via Model Re-sharding
- Title(参考訳): Seesaw: モデル再シャーディングによる高スループットLCM推論
- Authors: Qidong Su, Wei Zhao, Xin Li, Muralidhar Andoorveedu, Chenhao Jiang, Zhanda Zhu, Kevin Song, Christina Giannoula, Gennady Pekhimenko,
- Abstract要約: 本稿ではスループット指向タスクに最適化された推論エンジンであるSeesawを紹介する。
Seesawの背景にある主要なアイデアは、並列化戦略の動的再構成を容易にする技術である動的モデル再シャーディングである。
- 参考スコア(独自算出の注目度): 8.840996987380484
- License:
- Abstract: To improve the efficiency of distributed large language model (LLM) inference, various parallelization strategies, such as tensor and pipeline parallelism, have been proposed. However, the distinct computational characteristics inherent in the two stages of LLM inference-prefilling and decoding-render a single static parallelization strategy insufficient for the effective optimization of both stages. In this work, we present Seesaw, an LLM inference engine optimized for throughput-oriented tasks. The key idea behind Seesaw is dynamic model re-sharding, a technique that facilitates the dynamic reconfiguration of parallelization strategies across stages, thereby maximizing throughput at both phases. To mitigate re-sharding overhead and optimize computational efficiency, we employ tiered KV cache buffering and transition-minimizing scheduling. These approaches work synergistically to reduce the overhead caused by frequent stage transitions while ensuring maximum batching efficiency. Our evaluation demonstrates that Seesaw achieves a throughput increase of up to 1.78x (1.36x on average) compared to vLLM, the most widely used state-of-the-art LLM inference engine.
- Abstract(参考訳): 分散大言語モデル(LLM)の効率を改善するため,テンソルやパイプライン並列化といった並列化戦略が提案されている。
しかし、LLM推論と復号化の2段階に固有の計算特性は、両段階の効率的な最適化に不十分な1つの静的並列化戦略である。
本稿ではスループット指向タスクに最適化されたLLM推論エンジンであるSeesawを紹介する。
Seesawの背景にある重要なアイデアは、動的モデル再シャーディング(Dynamic Model re-sharding)である。
再シャーディングのオーバーヘッドを軽減し,計算効率を最適化するために,階層型KVキャッシュバッファリングと遷移最小化スケジューリングを用いる。
これらのアプローチは、バッチ処理の最大効率を確保しながら、頻繁なステージ遷移によるオーバーヘッドを軽減するために相乗的に機能する。
我々の評価は、最も広く使われているLLM推論エンジンであるvLLMと比較して、Seesawはスループットを最大1.78倍 (平均1.36倍)向上させることを示した。
関連論文リスト
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
LLM(Large Language Models)をスクラッチからトレーニングするには膨大な計算資源が必要であるため、非常に高価である。
モデルスケーリングアップは、より小さなモデルのパラメータを活用してより大きなモデルを作成することで、有望なソリューションを提供する。
深度スケールアップのための新しい学習方法である textbfLESA を提案する。
論文 参考訳(メタデータ) (2025-02-19T14:58:48Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [95.32315448601241]
本稿では,RoSTE (Rotated Straight-Through-Estimator) というアルゴリズムを提案する。
RoSTEは、量子化を意識した微調整(QA-SFT)と適応的な回転戦略を組み合わせることで、アクティベーションアウトリーを減少させる。
その結果, 予測誤差は収束重みの量子化誤差と直接比例し, 最適化された回転構成により効果的に管理できることが判明した。
論文 参考訳(メタデータ) (2025-02-13T06:44:33Z) - Online Scheduling for LLM Inference with KV Cache Constraints [22.155429544207827]
大規模言語モデル(LLM)推論は、レイテンシとリソース利用を最適化するための効率的なスケジューリングを必要とする集約的なプロセスである。
KVキャッシュのメモリを効果的に管理しながら、推論遅延を最小限に抑える新しいスケジューリングアルゴリズムを提案する。
我々の成果は、より持続的で費用対効果の高いLLMデプロイメントへの道筋を提供する。
論文 参考訳(メタデータ) (2025-02-10T23:11:44Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,既存の並列処理方式を超越したMoE用パイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法と比較して,プリフィルスループットは52.4%向上した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
グラデーションベースとハイレベルなLLMは、協調最適化フレームワークを効果的に組み合わせることができることを示す。
本稿では,これらを相互に補完し,組み合わせた最適化フレームワークを効果的に連携させることができることを示す。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - Acceleration of Subspace Learning Machine via Particle Swarm
Optimization and Parallel Processing [23.33955958124822]
サブスペース・ラーニング・マシン(SLM)は、一般的な分類および回帰タスクにおいて高い性能を提供するために提案されている。
性能改善は高い計算複雑性を犠牲にして達成される。
実験結果から, 加速SLM法はトレーニング時間で577の高速化率を達成することがわかった。
論文 参考訳(メタデータ) (2022-08-15T06:33:15Z) - Layer-Wise Partitioning and Merging for Efficient and Scalable Deep
Learning [16.38731019298993]
我々は、より優れたトレーニング性能を提供するために、新しいレイヤワイドパーティショニングとマージ、前方および後方パス並列フレームワークを提案している。
実使用事例を実験的に評価したところ,提案手法は訓練速度において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-07-22T11:47:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。