論文の概要: Explanation-Based Human Debugging of NLP Models: A Survey
- arxiv url: http://arxiv.org/abs/2104.15135v1
- Date: Fri, 30 Apr 2021 17:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 13:54:19.272188
- Title: Explanation-Based Human Debugging of NLP Models: A Survey
- Title(参考訳): 説明に基づくNLPモデルのヒューマンデバッグに関する調査
- Authors: Piyawat Lertvittayakumjorn, Francesca Toni
- Abstract要約: この問題を説明ベースのヒューマンデバッグ(EBHD)と呼ぶ。
特に、EBHDの3つの主次元に沿った既存の作品の分類と議論を行う。
- 参考スコア(独自算出の注目度): 15.115037763351003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To fix a bug in a program, we need to locate where the bug is, understand why
it causes the problem, and patch the code accordingly. This process becomes
harder when the program is a trained machine learning model and even harder for
opaque deep learning models. In this survey, we review papers that exploit
explanations to enable humans to debug NLP models. We call this problem
explanation-based human debugging (EBHD). In particular, we categorize and
discuss existing works along three main dimensions of EBHD (the bug context,
the workflow, and the experimental setting), compile findings on how EBHD
components affect human debuggers, and highlight open problems that could be
future research directions.
- Abstract(参考訳): プログラムのバグを修正するには、バグの所在を特定し、なぜ問題を引き起こすのかを理解し、それに応じてコードをパッチする必要がある。
このプロセスは、プログラムが訓練された機械学習モデルであり、不透明なディープラーニングモデルにとってさらに困難になる。
本研究では,人間によるNLPモデルのデバッグを可能にするために,説明を利用した論文をレビューする。
我々はこの問題を,EBHD (Human Debug) と呼ぶ。
特に、EBHD(バグコンテキスト、ワークフロー、実験環境)の3つの主要な側面に沿った既存の研究を分類し、議論し、EBHDコンポーネントがヒューマンデバッガにどのように影響するかの知見をコンパイルし、将来の研究方向であるオープンな問題を強調する。
関連論文リスト
- BugSpotter: Automated Generation of Code Debugging Exercises [22.204802715829615]
本稿では,問題記述からバグコードを生成するツールであるBugSpotterを紹介する。
学生は失敗するテストケースを設計することでBugSpotterと対話する。
論文 参考訳(メタデータ) (2024-11-21T16:56:33Z) - A Proposal for a Debugging Learning Support Environment for Undergraduate Students Majoring in Computer Science [0.0]
生徒はデバッガの使い方を知らないし、使ったこともない。
我々は,正しいブレークポイント配置の自己学習を可能にする機能をScratchに実装した。
論文 参考訳(メタデータ) (2024-07-25T03:34:19Z) - VDebugger: Harnessing Execution Feedback for Debugging Visual Programs [103.61860743476933]
V Debuggerは、視覚プログラムのローカライズとデバッギングのために、段階的に実行を追跡することで訓練された、批評家とリファインダーのフレームワークである。
Vデバッガは、詳細な実行フィードバックを活用してプログラムエラーを特定し、修正する。
6つのデータセットの評価は、Vデバッガの有効性を示し、ダウンストリームタスクの精度が最大3.2%向上したことを示している。
論文 参考訳(メタデータ) (2024-06-19T11:09:16Z) - Leveraging Print Debugging to Improve Code Generation in Large Language
Models [63.63160583432348]
大規模言語モデル(LLM)はコード生成タスクにおいて大きな進歩を遂げた。
しかし、複雑なデータ構造やアルゴリズムによるプログラミング問題に対処する彼らのパフォーマンスは、依然として準最適である。
そこで本稿では,LLM のデバッグを "print debugging" 手法でガイドする,コンテキスト内学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-10T18:37:59Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - NuzzleBug: Debugging Block-Based Programs in Scratch [11.182625995483862]
NuzzleBugは、人気のあるブロックベースのプログラミング環境であるScratchの拡張である。
これは、実行について質問し、回答を提供することができる尋問デバッガである。
教師はNuzzleBugが有用であると考えており、子どもたちはプログラムの欠陥を効果的にデバッグすることができる。
論文 参考訳(メタデータ) (2023-09-25T18:56:26Z) - Does Correction Remain A Problem For Large Language Models? [63.24433996856764]
本稿では,2つの実験を行ない,大規模言語モデルの文脈における補正の役割について検討する。
最初の実験では、誤り訂正のためのGPTのようなモデルを用いた数発の学習技術を用いて、単独のタスクとしての修正に焦点を当てた。
第2の実験では、あるレベルのノイズや誤りを含むテキストに対して、大きな言語モデルが許容し、適切に実行可能であるかどうかを検証し、他のNLPタスクの予備タスクとしての補正の概念について検討した。
論文 参考訳(メタデータ) (2023-08-03T14:09:31Z) - An Effective Data-Driven Approach for Localizing Deep Learning Faults [20.33411443073181]
問題パターンの学習にモデル機能を活用する新しいデータ駆動手法を提案する。
本手法は,手作業によるマッピングを必要とせず,バグ症状を根本原因に自動的に関連付ける。
以上の結果から,本手法は様々なバグタイプを効果的に検出・診断できることが示唆された。
論文 参考訳(メタデータ) (2023-07-18T03:28:39Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
本稿では,大規模言語モデルで予測プログラムを数発のデモでデバッグする自己デバッグを提案する。
論文 参考訳(メタデータ) (2023-04-11T10:43:43Z) - ADPTriage: Approximate Dynamic Programming for Bug Triage [0.0]
オンラインバグトリアージタスクのためのマルコフ決定プロセス(MDP)モデルを開発した。
私たちはADPTriageと呼ばれるADPベースのバグトリアージソリューションを提供しています。
以上の結果から, 代入精度と固定時間の観点から, ミオピックアプローチよりも有意な改善が見られた。
論文 参考訳(メタデータ) (2022-11-02T04:42:21Z) - DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation [61.99379022383108]
本稿では,バグトリアージ問題を解決するための新しいディープラーニングモデルを提案する。
モデルは、注目された双方向のリカレントニューラルネットワークと畳み込みニューラルネットワークに基づいている。
ランキングの質を向上させるために,バージョン管理システムのアノテーションから追加情報を利用することを提案する。
論文 参考訳(メタデータ) (2022-01-14T00:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。