Ethics-Based Auditing to Develop Trustworthy AI
- URL: http://arxiv.org/abs/2105.00002v1
- Date: Fri, 30 Apr 2021 11:39:40 GMT
- Title: Ethics-Based Auditing to Develop Trustworthy AI
- Authors: Jakob Mokander and Luciano Floridi
- Abstract summary: We argue that ethics-based auditing can improve the quality of decision making, increase user satisfaction, unlock growth potential, enable law-making, and relieve human suffering.
To be feasible and effective, ethics-based auditing should take the form of a continuous and constructive process, approach ethical alignment from a system perspective, and be aligned with public policies and incentives for ethically desirable behaviour.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A series of recent developments points towards auditing as a promising
mechanism to bridge the gap between principles and practice in AI ethics.
Building on ongoing discussions concerning ethics-based auditing, we offer
three contributions. First, we argue that ethics-based auditing can improve the
quality of decision making, increase user satisfaction, unlock growth
potential, enable law-making, and relieve human suffering. Second, we highlight
current best practices to support the design and implementation of ethics-based
auditing: To be feasible and effective, ethics-based auditing should take the
form of a continuous and constructive process, approach ethical alignment from
a system perspective, and be aligned with public policies and incentives for
ethically desirable behaviour. Third, we identify and discuss the constraints
associated with ethics-based auditing. Only by understanding and accounting for
these constraints can ethics-based auditing facilitate ethical alignment of AI,
while enabling society to reap the full economic and social benefits of
automation.
Related papers
- Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Informed AI Regulation: Comparing the Ethical Frameworks of Leading LLM
Chatbots Using an Ethics-Based Audit to Assess Moral Reasoning and Normative
Values [0.0]
Ethics-based audits play a pivotal role in the rapidly growing fields of AI safety and regulation.
This paper undertakes an ethics-based audit to probe the 8 leading commercial and open-source Large Language Models including GPT-4.
arXiv Detail & Related papers (2024-01-09T14:57:30Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models.
We introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method.
arXiv Detail & Related papers (2023-10-26T16:45:40Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
The principles-based ethics assurance argument pattern is one proposal in the AI ethics landscape.
This paper presents the interim findings of a case study applying this ethics assurance framework to the use of Dora, an AI-based telemedicine system.
arXiv Detail & Related papers (2023-05-23T16:04:59Z) - Macro Ethics Principles for Responsible AI Systems: Taxonomy and Future Directions [1.864621482724548]
We develop a taxonomy of 21 normative ethical principles which can be operationalised in AI.
We envision this taxonomy will facilitate the development of methodologies to incorporate normative ethical principles in reasoning capacities of responsible AI systems.
arXiv Detail & Related papers (2022-08-12T08:48:16Z) - AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers [8.82540441326446]
Transparency, accountability, and privacy are the most critical AI ethics principles.
Lack of ethical knowledge, no legal frameworks, and lacking monitoring bodies are the most common AI ethics challenges.
arXiv Detail & Related papers (2022-06-30T17:24:29Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Towards An Ethics-Audit Bot [0.6445605125467572]
We propose a system that is able to conduct an ethical audit of a target system, given certain socio-technical conditions.
To be more specific, we propose the creation of a bot that is able to support organisations in ensuring that their software development lifecycles contain processes that meet certain ethical standards.
arXiv Detail & Related papers (2021-03-29T16:33:22Z) - Case Study: Deontological Ethics in NLP [119.53038547411062]
We study one ethical theory, namely deontological ethics, from the perspective of NLP.
In particular, we focus on the generalization principle and the respect for autonomy through informed consent.
We provide four case studies to demonstrate how these principles can be used with NLP systems.
arXiv Detail & Related papers (2020-10-09T16:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.