AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers
- URL: http://arxiv.org/abs/2207.01493v2
- Date: Tue, 15 Nov 2022 10:34:55 GMT
- Title: AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers
- Authors: Arif Ali Khan, Muhammad Azeem Akbar, Mahdi Fahmideh, Peng Liang,
Muhammad Waseem, Aakash Ahmad, Mahmood Niazi, Pekka Abrahamsson
- Abstract summary: Transparency, accountability, and privacy are the most critical AI ethics principles.
Lack of ethical knowledge, no legal frameworks, and lacking monitoring bodies are the most common AI ethics challenges.
- Score: 8.82540441326446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) solutions and technologies are being
increasingly adopted in smart systems context, however, such technologies are
continuously concerned with ethical uncertainties. Various guidelines,
principles, and regulatory frameworks are designed to ensure that AI
technologies bring ethical well-being. However, the implications of AI ethics
principles and guidelines are still being debated. To further explore the
significance of AI ethics principles and relevant challenges, we conducted a
survey of 99 representative AI practitioners and lawmakers (e.g., AI engineers,
lawyers) from twenty countries across five continents. To the best of our
knowledge, this is the first empirical study that encapsulates the perceptions
of two different types of population (AI practitioners and lawmakers) and the
study findings confirm that transparency, accountability, and privacy are the
most critical AI ethics principles. On the other hand, lack of ethical
knowledge, no legal frameworks, and lacking monitoring bodies are found the
most common AI ethics challenges. The impact analysis of the challenges across
AI ethics principles reveals that conflict in practice is a highly severe
challenge. Moreover, the perceptions of practitioners and lawmakers are
statistically correlated with significant differences for particular principles
(e.g. fairness, freedom) and challenges (e.g. lacking monitoring bodies,
machine distortion). Our findings stimulate further research, especially
empowering existing capability maturity models to support the development and
quality assessment of ethics-aware AI systems.
Related papers
- Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
Ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact.
This work unifies the current and future ethical concerns of deploying AI into society.
arXiv Detail & Related papers (2023-11-28T21:00:56Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw)
A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI.
arXiv Detail & Related papers (2023-11-11T04:13:37Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
The paper highlights the impact AI has in every sector of the US economy and the resultant effect on entities spanning businesses, government, academia, and civil society.
Our discussion explores eleven fundamental 'ethical principles' structured as overarching themes.
These encompass Transparency, Justice, Fairness, Equity, Non- Maleficence, Responsibility, Accountability, Privacy, Beneficence, Freedom, Autonomy, Trust, Dignity, Sustainability, and Solidarity.
arXiv Detail & Related papers (2023-10-09T14:29:00Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Ethics in the Age of AI: An Analysis of AI Practitioners' Awareness and
Challenges [11.656193349991609]
We conducted a survey aimed at understanding AI practitioners' awareness of AI ethics and their challenges in incorporating ethics.
Based on 100 AI practitioners' responses, our findings indicate that majority of AI practitioners had a reasonable familiarity with the concept of AI ethics.
Formal education/training was considered somewhat helpful in preparing practitioners to incorporate AI ethics.
arXiv Detail & Related papers (2023-07-14T02:50:46Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Ethics of AI: A Systematic Literature Review of Principles and
Challenges [3.7129018407842445]
Transparency, privacy, accountability and fairness are identified as the most common AI ethics principles.
Lack of ethical knowledge and vague principles are reported as the significant challenges for considering ethics in AI.
arXiv Detail & Related papers (2021-09-12T15:33:43Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.