論文の概要: Self-supervised Augmentation Consistency for Adapting Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2105.00097v1
- Date: Fri, 30 Apr 2021 21:32:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 14:18:47.546923
- Title: Self-supervised Augmentation Consistency for Adapting Semantic
Segmentation
- Title(参考訳): セマンティクスセグメンテーション適応のための自己教師付き拡張一貫性
- Authors: Nikita Araslanov and Stefan Roth
- Abstract要約: 本稿では,実用的かつ高精度な意味セグメンテーションのためのドメイン適応手法を提案する。
私たちは標準データ拡張技術である$-$フォトメトリックノイズ、フリップとスケーリング$-$を採用し、セマンティック予測の一貫性を保証する。
適応後の最先端セグメンテーション精度を大幅に改善し、バックボーンアーキテクチャと適応シナリオの異なる選択に整合性を持たせる。
- 参考スコア(独自算出の注目度): 56.91850268635183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an approach to domain adaptation for semantic segmentation that is
both practical and highly accurate. In contrast to previous work, we abandon
the use of computationally involved adversarial objectives, network ensembles
and style transfer. Instead, we employ standard data augmentation techniques
$-$ photometric noise, flipping and scaling $-$ and ensure consistency of the
semantic predictions across these image transformations. We develop this
principle in a lightweight self-supervised framework trained on co-evolving
pseudo labels without the need for cumbersome extra training rounds. Simple in
training from a practitioner's standpoint, our approach is remarkably
effective. We achieve significant improvements of the state-of-the-art
segmentation accuracy after adaptation, consistent both across different
choices of the backbone architecture and adaptation scenarios.
- Abstract(参考訳): 本稿では,実用的かつ高精度な意味セグメンテーションのためのドメイン適応手法を提案する。
従来の研究とは対照的に、計算に係わる敵の目的、ネットワークアンサンブル、スタイル転送の使用は放棄する。
代わりに、標準的なデータ拡張技術$-$フォトメトリックノイズ、フリップとスケーリング$-$を採用し、これらの画像変換におけるセマンティックな予測の一貫性を確保します。
我々は、この原則を、面倒な余分なトレーニングラウンドを必要とせずに、擬似ラベルを共進化させる軽量な自己教師型フレームワークで開発する。
実践者の立場から学ぶと,我々のアプローチは極めて効果的である。
適応後の最先端セグメンテーション精度を大幅に改善し、バックボーンアーキテクチャと適応シナリオの異なる選択に整合性を持たせる。
関連論文リスト
- Condition-Invariant Semantic Segmentation [77.10045325743644]
我々は現在最先端のドメイン適応アーキテクチャ上で条件不変セマンティック(CISS)を実装している。
本手法は,通常の都市景観$to$ACDCベンチマークにおいて,2番目に高い性能を実現する。
CISSはBDD100K-nightやACDC-nightのようなトレーニング中に見えない領域によく一般化している。
論文 参考訳(メタデータ) (2023-05-27T03:05:07Z) - Dense Unsupervised Learning for Video Segmentation [49.46930315961636]
ビデオオブジェクトセグメンテーション(VOS)のための教師なし学習のための新しいアプローチを提案する。
これまでの研究とは異なり、我々の定式化によって、完全に畳み込みの仕組みで、密集した特徴表現を直接学習することができる。
我々の手法は、トレーニングデータや計算能力が大幅に少ないにもかかわらず、以前の作業のセグメンテーション精度を超える。
論文 参考訳(メタデータ) (2021-11-11T15:15:11Z) - Adapting Segmentation Networks to New Domains by Disentangling Latent
Representations [14.050836886292869]
ドメイン適応アプローチは、ラベルを持つソースドメインから取得した知識を関連するラベルを持つターゲットドメインに転送する役割を担っている。
本稿では,教師付きトレーニングと比較して適応戦略の相対的有効性を捉えるための新しい性能指標を提案する。
論文 参考訳(メタデータ) (2021-08-06T09:43:07Z) - PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency
Training [4.336877104987131]
教師なしドメイン適応はセマンティックセグメンテーションの有望なテクニックである。
対象領域整合性訓練の概念に基づく非監視領域適応のための新しいフレームワークを提案する。
私たちのアプローチはシンプルで、実装が簡単で、トレーニング時にメモリ効率が向上します。
論文 参考訳(メタデータ) (2021-05-17T19:36:28Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
ドメイン間で構造的に類似するラベルパッチの機能を調整することで、ドメインギャップを埋めるためにコントラスト学習を利用する。
私たちのアプローチは、常に2つの困難なドメイン適応セグメンテーションタスクにおいて、最先端の非監視および半監督メソッドを上回ります。
論文 参考訳(メタデータ) (2021-04-22T13:39:12Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
セマンティックセグメンテーションにおけるドメインの不一致を減らすために、機能レベルの空間形成正規化戦略を紹介します。
このような手法の有効性を自律運転環境で検証する。
論文 参考訳(メタデータ) (2021-04-06T16:07:22Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
我々は,半教師付き学習と移動学習を共同で検討し,より実践的で競争的なパラダイムへと導いた。
事前学習した重みとラベルなしの目標サンプルの両方の価値をよりよく活用するために、適応整合正則化を導入する。
提案手法は,Pseudo Label,Mean Teacher,MixMatchといった,最先端の半教師付き学習技術より優れた適応整合性正規化を実現する。
論文 参考訳(メタデータ) (2021-03-03T05:46:39Z) - Cross-modal Learning for Domain Adaptation in 3D Semantic Segmentation [11.895722159139108]
ドメイン適応はラベルが不足している場合の学習を可能にする重要なタスクである。
相互模倣による2つのモダリティの予測の整合性を実現するクロスモーダル学習を提案する。
我々は、ラベル付きデータに対する正確な予測とラベルなしのターゲットドメインデータに対するモダリティ間の一貫性のある予測をネットワークに制限する。
論文 参考訳(メタデータ) (2021-01-18T18:59:21Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
本稿では,ソースとターゲットの画素ペア間の画素レベルサイクルの関連性を構築することを提案する。
我々の手法は1段階のエンドツーエンドで訓練でき、追加のパラメータは導入しない。
論文 参考訳(メタデータ) (2020-10-31T00:11:36Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
教師なしのドメイン適応アルゴリズムは、あるドメインから学んだ知識を別のドメインに転送することを目的としている。
本稿では,新しい画素単位の対向領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-09T19:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。