論文の概要: Distilling EEG Representations via Capsules for Affective Computing
- arxiv url: http://arxiv.org/abs/2105.00104v1
- Date: Fri, 30 Apr 2021 22:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 13:58:08.433906
- Title: Distilling EEG Representations via Capsules for Affective Computing
- Title(参考訳): 感情コンピューティングのためのカプセルによる脳波表現の蒸留
- Authors: Guangyi Zhang and Ali Etemad
- Abstract要約: カプセル型アーキテクチャを用いて脳波表現を蒸留する新しい知識蒸留パイプラインを提案する。
本フレームワークは,教師から効果的に学習できる圧縮率の異なる学生ネットワークを実現する。
この手法は2つのデータセットのうちの1つで最先端の結果を得る。
- 参考スコア(独自算出の注目度): 14.67085109524245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Affective computing with Electroencephalogram (EEG) is a challenging task
that requires cumbersome models to effectively learn the information contained
in large-scale EEG signals, causing difficulties for real-time smart-device
deployment. In this paper, we propose a novel knowledge distillation pipeline
to distill EEG representations via capsule-based architectures for both
classification and regression tasks. Our goal is to distill information from a
heavy model to a lightweight model for subject-specific tasks. To this end, we
first pre-train a large model (teacher network) on large number of training
samples. Then, we employ the teacher network to learn the discriminative
features embedded in capsules by adopting a lightweight model (student network)
to mimic the teacher using the privileged knowledge. Such privileged
information learned by the teacher contain similarities among capsules and are
only available during the training stage of the student network. We evaluate
the proposed architecture on two large-scale public EEG datasets, showing that
our framework consistently enables student networks with different compression
ratios to effectively learn from the teacher, even when provided with limited
training samples. Lastly, our method achieves state-of-the-art results on one
of the two datasets.
- Abstract(参考訳): 脳波(EEG)による影響計算は、大規模な脳波信号に含まれる情報を効果的に学習するために煩雑なモデルを必要とする課題である。
本稿では, カプセル型アーキテクチャを用いて脳波表現を抽出し, 分類および回帰処理を行う新しい知識蒸留パイプラインを提案する。
我々の目標は、重モデルから主観的なタスクのための軽量モデルへの情報を抽出することです。
この目的のために、我々はまず、多数のトレーニングサンプル上で大きなモデル(教師ネットワーク)を事前訓練する。
そこで我々は,教師ネットワークを用いて,教師の特権知識を模倣する軽量モデル(学生ネットワーク)を採用することにより,カプセルに埋め込まれた差別的特徴を学習する。
教師が学んだ特権情報にはカプセル間の類似性が含まれており、学生ネットワークのトレーニング段階でのみ利用できる。
提案したアーキテクチャを2つの大規模パブリックEEGデータセット上で評価し,限られたトレーニングサンプルが提供されても,異なる圧縮比の学生ネットワークが教師から効果的に学習できることを示す。
最後に,本手法は2つのデータセットのうちの1つについて最先端の結果を得る。
関連論文リスト
- Faithful Label-free Knowledge Distillation [8.572967695281054]
本稿では,中期教師(TinTeM)と呼ばれるラベルフリーな知識蒸留手法を提案する。
より忠実な学生を生み出し、教師ネットワークの振る舞いをよりよく再現し、モデルの堅牢性、一般化可能性、アウト・オブ・ディストリビューション検出などをテストする。
論文 参考訳(メタデータ) (2024-11-22T01:48:44Z) - Multi-Task Multi-Scale Contrastive Knowledge Distillation for Efficient Medical Image Segmentation [0.0]
本論文は,医用画像分割作業におけるニューラルネットワーク間の知識伝達の実現可能性を検討することを目的とする。
データボリュームが制限される医療画像の文脈では、より大きなトレーニング済みネットワークからの知識を活用することが有用である。
論文 参考訳(メタデータ) (2024-06-05T12:06:04Z) - Distribution Shift Matters for Knowledge Distillation with Webly
Collected Images [91.66661969598755]
異なる分布間の知識蒸留という新しい手法を提案する(KD$3$)。
まず,教師ネットワークと学生ネットワークの併用予測に基づいて,Webで収集したデータから有用なトレーニングインスタンスを動的に選択する。
また、MixDistributionと呼ばれる新しいコントラスト学習ブロックを構築して、新しい分散のインスタンスアライメントで摂動データを生成します。
論文 参考訳(メタデータ) (2023-07-21T10:08:58Z) - Cross Architecture Distillation for Face Recognition [49.55061794917994]
本研究では,教師にプロンプトを組み込むことで,蒸留専門知識の管理を可能にする適応型プロンプト教師ネットワーク(APT)を開発した。
一般的な顔のベンチマークと2つの大規模な検証セットによる実験は,本手法の優位性を実証している。
論文 参考訳(メタデータ) (2023-06-26T12:54:28Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
大規模なニューラルモデル(トランスフォーマーなど)は、情報検索(IR)のための最先端のパフォーマンスを達成する
本研究では,大規模教師モデルで学習したクエリとドキュメント間の相対的幾何を利用した新しい蒸留手法を提案する。
提案手法は, 両エンコーダ (DE) とクロスエンコーダ (CE) の2種類の教師モデルから, 95~97%の教師性能を維持できる1/10の非対称な学生への蒸留に成功した。
論文 参考訳(メタデータ) (2023-01-27T22:04:37Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
我々は、自己指導型事前学習モデルから他の学生ネットワークへ知識を伝達するための新しい知識蒸留フレームワークを定式化した。
自己教師型学習におけるインスタンス識別の精神に触発され,特徴埋め込み空間におけるグラフ定式化によるインスタンスとインスタンスの関係をモデル化する。
蒸留方式は, 学生ネットワーク上での表現学習を促進するために, 自己指導型知識の伝達に柔軟に適用できる。
論文 参考訳(メタデータ) (2022-11-23T19:27:48Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
グラフ構造化データ(DFAD-GNN)を用いたデータフリー逆知識蒸留のための第1のエンドツーエンドフレームワークを提案する。
具体的には、DFAD-GNNは、教師モデルと学生モデルとを2つの識別器とみなし、教師モデルから学生モデルに知識を抽出するために学習グラフを導出するジェネレータという、主に3つの成分からなる生成的対向ネットワークを採用している。
我々のDFAD-GNNは、グラフ分類タスクにおける最先端のデータフリーベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2022-05-08T08:19:40Z) - Oracle Teacher: Leveraging Target Information for Better Knowledge
Distillation of CTC Models [10.941519846908697]
我々は、コネクショニスト時間分類(CTC)に基づくシーケンスモデル、すなわち、Oracle Teacherのための新しいタイプの教師モデルを導入する。
Oracle Teacherは、ターゲット情報を参照することによって、より正確なCTCアライメントを学ぶため、より最適なガイダンスを提供することができる。
CTCアルゴリズムの多対一マッピング特性に基づいて、自明な解を効果的に防止できるトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-11-05T14:14:05Z) - BENDR: using transformers and a contrastive self-supervised learning
task to learn from massive amounts of EEG data [15.71234837305808]
言語モデリング(LM)の手法とアーキテクチャを脳波モデリング(EM)に適用する方法を検討する。
1つの事前学習モデルが、異なるハードウェアで記録された全く新しい生の脳波シーケンスをモデル化できることがわかった。
このモデルの内部表現とアーキテクチャ全体は、さまざまな下流のBCIおよびEEG分類タスクに微調整することができる。
論文 参考訳(メタデータ) (2021-01-28T14:54:01Z) - Efficient Crowd Counting via Structured Knowledge Transfer [122.30417437707759]
クラウドカウントはアプリケーション指向のタスクであり、その推論効率は現実世界のアプリケーションにとって不可欠である。
本稿では,学生ネットワークを軽量かつ高効率に構築する構造的知識伝達フレームワークを提案する。
我々のモデルはNvidia 1080 GPUで最低6.5$times$のスピードアップを取得し、最先端のパフォーマンスも達成しています。
論文 参考訳(メタデータ) (2020-03-23T08:05:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。