論文の概要: Multi-Task Multi-Scale Contrastive Knowledge Distillation for Efficient Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2406.03173v1
- Date: Wed, 5 Jun 2024 12:06:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:40:12.664017
- Title: Multi-Task Multi-Scale Contrastive Knowledge Distillation for Efficient Medical Image Segmentation
- Title(参考訳): 効率的な医用画像分割のためのマルチタスクマルチスケールコントラスト知識蒸留
- Authors: Risab Biswas,
- Abstract要約: 本論文は,医用画像分割作業におけるニューラルネットワーク間の知識伝達の実現可能性を検討することを目的とする。
データボリュームが制限される医療画像の文脈では、より大きなトレーニング済みネットワークからの知識を活用することが有用である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis aims to investigate the feasibility of knowledge transfer between neural networks for medical image segmentation tasks, specifically focusing on the transfer from a larger multi-task "Teacher" network to a smaller "Student" network. In the context of medical imaging, where the data volumes are often limited, leveraging knowledge from a larger pre-trained network could be useful. The primary objective is to enhance the performance of a smaller student model by incorporating knowledge representations acquired by a teacher model that adopts a multi-task pre-trained architecture trained on CT images, to a more resource-efficient student network, which can essentially be a smaller version of the same, trained on a mere 50% of the data than that of the teacher model. To facilitate knowledge transfer between the two models, we devised an architecture incorporating multi-scale feature distillation and supervised contrastive learning. Our study aims to improve the student model's performance by integrating knowledge representations from the teacher model. We investigate whether this approach is particularly effective in scenarios with limited computational resources and limited training data availability. To assess the impact of multi-scale feature distillation, we conducted extensive experiments. We also conducted a detailed ablation study to determine whether it is essential to distil knowledge at various scales, including low-level features from encoder layers, for effective knowledge transfer. In addition, we examine different losses in the knowledge distillation process to gain insights into their effects on overall performance.
- Abstract(参考訳): この論文は、医療画像セグメンテーションタスクのためのニューラルネットワーク間の知識伝達の実現可能性を検討することを目的としており、特に、より大規模なマルチタスク"Teacher"ネットワークからより小さな"Student"ネットワークへの移行に焦点を当てている。
データボリュームが制限される医療画像の文脈では、より大きなトレーニング済みネットワークからの知識を活用することが有用である。
主な目的は、CT画像上で訓練されたマルチタスク事前学習アーキテクチャを採用する教師モデルによって得られた知識表現を、教師モデルよりも50%程度のデータで訓練された、基本的にはそれより小さなバージョンの学生ネットワークに組み込むことにより、より小さな学生モデルの性能を高めることである。
両モデル間の知識伝達を容易にするため,マルチスケールな特徴蒸留と教師付きコントラスト学習を取り入れたアーキテクチャを考案した。
本研究の目的は,教師モデルから知識表現を統合することで,学生モデルの性能を向上させることである。
本稿では,この手法が,限られた計算資源と限られたトレーニングデータ可用性を持つシナリオにおいて特に有効かどうかを検討する。
マルチスケール蒸留の効果を評価するため, 広範囲な実験を行った。
また,エンコーダ層からの低レベル特徴を含む様々なスケールの知識を効果的に伝達するために,知識の除去が不可欠かどうかを詳細に検討した。
さらに, 知識蒸留プロセスにおける損失の相違について検討し, 総合的な性能への影響について考察した。
関連論文リスト
- Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors [10.454194186065195]
強化学習はロボット制御タスクにおいて有望な成果を上げてきたが、情報の有効活用に苦慮している。
最近の研究は、複数の感覚入力から関節表現を抽出するために、再構成や相互情報に基づく補助的損失を構築している。
生のマルチモーダル観測について,学習した共同表現で情報を圧縮することが有用である。
論文 参考訳(メタデータ) (2024-10-23T04:32:37Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
本研究では,脳波復号処理における深層学習表現の伝達可能性について検討した。
最近リリースされた2つのEEGデータセット上で、最先端デコードモデルを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2023-07-28T14:51:09Z) - Prototype-guided Cross-task Knowledge Distillation for Large-scale
Models [103.04711721343278]
クロスタスクの知識蒸留は、競争力のあるパフォーマンスを得るために小さな学生モデルを訓練するのに役立ちます。
本稿では,大規模教師ネットワークの内在的ローカルレベルのオブジェクト知識を様々なタスクシナリオに転送するための,プロトタイプ誘導型クロスタスク知識蒸留(ProC-KD)アプローチを提案する。
論文 参考訳(メタデータ) (2022-12-26T15:00:42Z) - On effects of Knowledge Distillation on Transfer Learning [0.0]
本稿では,知識蒸留と伝達学習を組み合わせたTL+KDという機械学習アーキテクチャを提案する。
我々は,教師ネットワークの指導と知識を微調整中に利用することにより,学生ネットワークを改良し,精度などの検証性能を向上させることができることを示した。
論文 参考訳(メタデータ) (2022-10-18T08:11:52Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
単一画像超解像課題に対する教師/学生アーキテクチャに基づくモデルに依存しないメタ知識蒸留法を提案する。
種々の単一画像超解像データセットを用いた実験により,提案手法は既存の知識表現関連蒸留法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-18T02:41:04Z) - Generalized Multi-Task Learning from Substantially Unlabeled
Multi-Source Medical Image Data [11.061381376559053]
MultiMixは、病気の分類と解剖学的セグメンテーションを半教師付きで共同で学習する、新しいマルチタスク学習モデルである。
トレーニングセットにおける多ソースラベル付きデータの多量化実験により,MultiMixの有効性が確認された。
論文 参考訳(メタデータ) (2021-10-25T18:09:19Z) - Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types [50.1843146606122]
現在の最新のコンピュータビジョンモデルでは、簡単な転送学習が一般的です。
転校学習に関するこれまでの体系的な研究は限られており、作業が期待される状況は十分に理解されていない。
本論文では,非常に異なる画像領域にまたがる転送学習の広範な実験的研究を行う。
論文 参考訳(メタデータ) (2021-03-24T16:24:20Z) - MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical
Images [13.690075845927606]
本稿では,病気の分類と解剖学的分類を軽視的に学習する新しいマルチタスク学習モデルであるMultiMixを提案する。
胸部X線画像からの肺炎の分類と肺の分画に対するマルチタスキングモデルの有効性について検討した。
論文 参考訳(メタデータ) (2020-10-28T03:47:29Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
知識蒸留では、教師ネットワークから「暗黒の知識」を抽出し、学生ネットワークの学習を指導する。
一見異なる自己超越的なタスクが、単純だが強力なソリューションとして機能することを示します。
これらの自己超越信号の類似性を補助的タスクとして活用することにより、隠された情報を教師から生徒に効果的に転送することができる。
論文 参考訳(メタデータ) (2020-06-12T12:18:52Z) - Neural Networks Are More Productive Teachers Than Human Raters: Active
Mixup for Data-Efficient Knowledge Distillation from a Blackbox Model [57.41841346459995]
我々は,ブラックボックス教師モデルから知識を抽出し,学生の深層ニューラルネットワークを視覚認識のために訓練する方法を,データ効率のよい方法で研究する。
混合学習とアクティブラーニングを融合した手法を提案する。
論文 参考訳(メタデータ) (2020-03-31T05:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。