One Detector to Rule Them All: Towards a General Deepfake Attack
Detection Framework
- URL: http://arxiv.org/abs/2105.00187v1
- Date: Sat, 1 May 2021 08:02:59 GMT
- Title: One Detector to Rule Them All: Towards a General Deepfake Attack
Detection Framework
- Authors: Shahroz Tariq, Sangyup Lee and Simon S. Woo
- Abstract summary: We introduce a Convolutional LSTM-based Residual Network (CLRNet) to better cope with unknown and unseen deepfakes.
Our CLRNet model demonstrated that it generalizes well against high-quality DFW videos by achieving 93.86% detection accuracy.
- Score: 19.762839181838388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based video manipulation methods have become widely accessible
to the masses. With little to no effort, people can quickly learn how to
generate deepfake (DF) videos. While deep learning-based detection methods have
been proposed to identify specific types of DFs, their performance suffers for
other types of deepfake methods, including real-world deepfakes, on which they
are not sufficiently trained. In other words, most of the proposed deep
learning-based detection methods lack transferability and generalizability.
Beyond detecting a single type of DF from benchmark deepfake datasets, we focus
on developing a generalized approach to detect multiple types of DFs, including
deepfakes from unknown generation methods such as DeepFake-in-the-Wild (DFW)
videos. To better cope with unknown and unseen deepfakes, we introduce a
Convolutional LSTM-based Residual Network (CLRNet), which adopts a unique model
training strategy and explores spatial as well as the temporal information in
deepfakes. Through extensive experiments, we show that existing defense methods
are not ready for real-world deployment. Whereas our defense method (CLRNet)
achieves far better generalization when detecting various benchmark deepfake
methods (97.57% on average). Furthermore, we evaluate our approach with a
high-quality DeepFake-in-the-Wild dataset, collected from the Internet
containing numerous videos and having more than 150,000 frames. Our CLRNet
model demonstrated that it generalizes well against high-quality DFW videos by
achieving 93.86% detection accuracy, outperforming existing state-of-the-art
defense methods by a considerable margin.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset and testing them on other prevalent deepfake datasets.
But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world?
We construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques.
arXiv Detail & Related papers (2024-06-19T12:35:02Z) - Unsupervised Multimodal Deepfake Detection Using Intra- and Cross-Modal Inconsistencies [14.660707087391463]
Deepfake videos present an increasing threat to society with potentially negative impact on criminal justice, democracy, and personal safety and privacy.
We propose a novel unsupervised method for detecting deepfake videos by directly identifying intra-modal and cross-modal inconsistency between video segments.
Our proposed method outperforms prior state-of-the-art unsupervised deepfake detection methods on the challenging FakeAVCeleb dataset.
arXiv Detail & Related papers (2023-11-28T03:28:19Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
This paper suggests a continual deepfake detection benchmark (CDDB) over a new collection of deepfakes from both known and unknown generative models.
We exploit multiple approaches to adapt multiclass incremental learning methods, commonly used in the continual visual recognition, to the continual deepfake detection problem.
arXiv Detail & Related papers (2022-05-11T13:07:19Z) - Model Attribution of Face-swap Deepfake Videos [39.771800841412414]
We first introduce a new dataset with DeepFakes from Different Models (DFDM) based on several Autoencoder models.
Specifically, five generation models with variations in encoder, decoder, intermediate layer, input resolution, and compression ratio have been used to generate a total of 6,450 Deepfake videos.
We take Deepfakes model attribution as a multiclass classification task and propose a spatial and temporal attention based method to explore the differences among Deepfakes.
arXiv Detail & Related papers (2022-02-25T20:05:18Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - A Convolutional LSTM based Residual Network for Deepfake Video Detection [23.275080108063406]
We develop a Convolutional LSTM based Residual Network (CLRNet) to detect deepfake videos.
We also propose a transfer learning-based approach to generalize different deepfake methods.
arXiv Detail & Related papers (2020-09-16T05:57:06Z) - Deepfake Detection using Spatiotemporal Convolutional Networks [0.0]
Deepfake detection methods only use individual frames and therefore fail to learn from temporal information.
We created a benchmark of performance using Celeb-DF dataset.
Our methods outperformed state-of-theart frame-based detection methods.
arXiv Detail & Related papers (2020-06-26T01:32:31Z) - Emotions Don't Lie: An Audio-Visual Deepfake Detection Method Using
Affective Cues [75.1731999380562]
We present a learning-based method for detecting real and fake deepfake multimedia content.
We extract and analyze the similarity between the two audio and visual modalities from within the same video.
We compare our approach with several SOTA deepfake detection methods and report per-video AUC of 84.4% on the DFDC and 96.6% on the DF-TIMIT datasets.
arXiv Detail & Related papers (2020-03-14T22:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.