論文の概要: Deep Insights of Deepfake Technology : A Review
- arxiv url: http://arxiv.org/abs/2105.00192v1
- Date: Sat, 1 May 2021 08:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-05 09:49:22.593263
- Title: Deep Insights of Deepfake Technology : A Review
- Title(参考訳): deepfake技術に関する深い洞察 : レビュー
- Authors: Bahar Uddin Mahmud, Afsana Sharmin
- Abstract要約: 新たな技術によって、誰にでもリアルで偽の動画、画像、さらには音声を操作できるようになりました。
Deepfake TechnologyはDeepfake Technologyとして広く知られています。
私たちの研究は、Deepfakeが社会にとって脅威であるにもかかわらず、適切な措置と厳格な規制がこれを防ぐことができることを明らかにしました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Under the aegis of computer vision and deep learning technology, a new
emerging techniques has introduced that anyone can make highly realistic but
fake videos, images even can manipulates the voices. This technology is widely
known as Deepfake Technology. Although it seems interesting techniques to make
fake videos or image of something or some individuals but it could spread as
misinformation via internet. Deepfake contents could be dangerous for
individuals as well as for our communities, organizations, countries religions
etc. As Deepfake content creation involve a high level expertise with
combination of several algorithms of deep learning, it seems almost real and
genuine and difficult to differentiate. In this paper, a wide range of articles
have been examined to understand Deepfake technology more extensively. We have
examined several articles to find some insights such as what is Deepfake, who
are responsible for this, is there any benefits of Deepfake and what are the
challenges of this technology. We have also examined several creation and
detection techniques. Our study revealed that although Deepfake is a threat to
our societies, proper measures and strict regulations could prevent this.
- Abstract(参考訳): コンピュータービジョンとディープラーニング技術のエージスの下で、新しい技術が登場し、誰でもリアルだがフェイクなビデオを作れるようになり、画像は音声を操作できるようになった。
この技術はディープフェイク技術として知られている。
偽ビデオや人物のイメージを作るには興味深いテクニックだが、インターネットを通じて誤情報として拡散する可能性がある。
ディープフェイクの内容は、個人にとっても、私たちのコミュニティ、組織、国宗教にとっても危険です。
Deepfakeのコンテンツ作成には、いくつかのディープラーニングアルゴリズムを組み合わせた高度な専門知識が伴うため、ほとんど本物で本物で区別が難しい。
本稿では,Deepfake技術をより広範囲に理解するために,幅広い論文が検討されている。
これに責任を持つDeepfakeが何か、Deepfakeのメリットがあるのか、この技術の課題は何なのか、といった洞察を得るために、いくつかの記事を調べてきた。
また,いくつかの生成・検出技術についても検討した。
我々の研究によると、ディープフェイクは我々の社会にとって脅威であるが、適切な措置と厳格な規制がこれを防ぐ可能性がある。
関連論文リスト
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - Unmasking Illusions: Understanding Human Perception of Audiovisual Deepfakes [49.81915942821647]
本研究は,ディープフェイク映像を主観的研究により識別する人間の能力を評価することを目的とする。
人間の観察者を5つの最先端オーディオ視覚深度検出モデルと比較することにより,その知見を提示する。
同じ40の動画で評価すると、すべてのAIモデルは人間より優れていることが分かりました。
論文 参考訳(メタデータ) (2024-05-07T07:57:15Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
ディープフェイク(Deepfakes)は、ディープラーニングベースのフェイクビデオとしても知られており、近年大きな関心を集めている。
これらのディープフェイクビデオは、誤った情報を広めたり、個人を偽装したり、フェイクニュースを作るといった悪質な目的で使用することができる。
ディープフェイク検出技術は、顔認識、モーション分析、音声と視覚の同期といった様々なアプローチを使用する。
論文 参考訳(メタデータ) (2023-09-06T18:17:47Z) - Hybrid Deepfake Detection Utilizing MLP and LSTM [0.0]
ディープフェイク(deepfake)は、最新の技術進歩にともなう発明である。
本稿では,2つのディープラーニングアルゴリズムを用いた新しいディープフェイク検出方式を提案する。
我々は、140k RealとFake Facesというデータセットを使用して、74.7%の精度で、ディープフェイクによって変化した画像を検出する。
論文 参考訳(メタデータ) (2023-04-21T16:38:26Z) - Deepfake Detection Analyzing Hybrid Dataset Utilizing CNN and SVM [0.0]
本稿では,2つの機械学習アルゴリズムを用いた新しいディープフェイク検出方式を提案する。
最近、Deepfakesはテクノロジーの進歩とともに上昇し、悪名高いオンラインユーザーが、自分の好きな人の顔をコンピューターで作り替えることを可能にした。
論文 参考訳(メタデータ) (2023-01-27T01:00:39Z) - DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhyは、新しいDeepfake Phylogenyデータセットである。
6つのディープフェイク検出アルゴリズムを用いて,DeePhyデータセットのベンチマークを示す。
論文 参考訳(メタデータ) (2022-09-19T15:30:33Z) - Using Deep Learning to Detecting Deepfakes [0.0]
ディープフェイク(Deepfakes)とは、ある人物の顔を別のコンピュータが生成した顔に置き換えるビデオまたは画像である。
このオンライン脅威に対抗するために、研究者たちはディープフェイクを検出するモデルを開発した。
本研究では、ディープラーニングアルゴリズムを用いて、この略奪的な脅威に対処する様々なディープフェイク検出モデルについて検討する。
論文 参考訳(メタデータ) (2022-07-27T17:05:16Z) - Deepfake Videos in the Wild: Analysis and Detection [6.246677573849458]
我々は、YouTubeとBilibiliから1,869本のビデオを含む、野生のディープフェイクビデオのデータセットを提示し、480万フレーム以上のコンテンツを抽出する。
第2に,実世界におけるディープフェイクコンテンツの成長パターン,人気,クリエーター,操作戦略,生産方法の包括的分析を行った。
第三に、我々は新しいデータセットを使って既存の防衛を体系的に評価し、実際の世界に配備する準備が整っていないことを観察する。
論文 参考訳(メタデータ) (2021-03-07T04:40:15Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。