論文の概要: Deepfake Media Forensics: State of the Art and Challenges Ahead
- arxiv url: http://arxiv.org/abs/2408.00388v2
- Date: Tue, 13 Aug 2024 15:10:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:58:40.377974
- Title: Deepfake Media Forensics: State of the Art and Challenges Ahead
- Title(参考訳): Deepfake Media Forensics:最先端技術と課題
- Authors: Irene Amerini, Mauro Barni, Sebastiano Battiato, Paolo Bestagini, Giulia Boato, Tania Sari Bonaventura, Vittoria Bruni, Roberto Caldelli, Francesco De Natale, Rocco De Nicola, Luca Guarnera, Sara Mandelli, Gian Luca Marcialis, Marco Micheletto, Andrea Montibeller, Giulia Orru', Alessandro Ortis, Pericle Perazzo, Giovanni Puglisi, Davide Salvi, Stefano Tubaro, Claudia Melis Tonti, Massimo Villari, Domenico Vitulano,
- Abstract要約: AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
- 参考スコア(独自算出の注目度): 51.33414186878676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-generated synthetic media, also called Deepfakes, have significantly influenced so many domains, from entertainment to cybersecurity. Generative Adversarial Networks (GANs) and Diffusion Models (DMs) are the main frameworks used to create Deepfakes, producing highly realistic yet fabricated content. While these technologies open up new creative possibilities, they also bring substantial ethical and security risks due to their potential misuse. The rise of such advanced media has led to the development of a cognitive bias known as Impostor Bias, where individuals doubt the authenticity of multimedia due to the awareness of AI's capabilities. As a result, Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques, especially Convolutional Neural Networks (CNNs). Research in forensic Deepfake technology encompasses five main areas: detection, attribution and recognition, passive authentication, detection in realistic scenarios, and active authentication. This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
- Abstract(参考訳): AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に大きな影響を与えている。
Generative Adversarial Networks (GANs) と Diffusion Models (DMs) は、Deepfakesを作成するために使われる主要なフレームワークであり、非常に現実的で製造されたコンテンツを生成する。
これらの技術は新たな創造的可能性を開く一方で、潜在的に悪用される可能性があるため、倫理的およびセキュリティ上の大きなリスクをもたらす。
このような先進的なメディアの台頭は、インポスタバイアスとして知られる認知バイアスの発達につながった。
その結果、ディープフェイク検出は研究の重要な領域となり、特に畳み込みニューラルネットワーク(CNN)による機械学習技術による微妙な矛盾やアーティファクトの識別に重点を置いている。
法医学的ディープフェイク技術の研究は、検出、属性と認識、受動的認証、現実的なシナリオにおける検出、アクティブ認証の5つの主要な領域を含んでいる。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
関連論文リスト
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey [40.11614155244292]
AI生成メディアがより現実的になるにつれて、誤情報を拡散したり、身元確認詐欺を犯したりする危険性が高まっている。
この研究は、従来の単一モダリティ手法から、音声・視覚・テキスト・視覚シナリオを扱う高度なマルチモーダルアプローチへの進化を辿る。
私たちの知る限りでは、この種の調査はこれが初めてである。
論文 参考訳(メタデータ) (2024-06-11T05:48:04Z) - Explainable Deepfake Video Detection using Convolutional Neural Network and CapsuleNet [0.0]
ディープフェイク技術は、実際の参加に関係なく、個人をデジタルメディアにシームレスに挿入する。
主要なディープフェイク生成アルゴリズムであるGANは、リアルなイメージやビデオを作成するために機械学習を使用している。
我々は、説明可能なAIを通じてモデルの意思決定プロセスを解明し、透明な人間とAIの関係を育むことを目指している。
論文 参考訳(メタデータ) (2024-04-19T12:21:27Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfakeは、特定の条件下で非常にリアルな顔画像やビデオを作成するための技術だ。
この調査は、ディープフェイクの発生と検出の最新の展開を包括的にレビューする。
本研究では, 顔交換, 顔再現, 話し顔生成, 顔属性編集の4つの代表的なディープフェイク分野の研究に焦点をあてる。
論文 参考訳(メタデータ) (2024-03-26T17:12:34Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
次世代無線ネットワーク(例:6G)は人工知能(AI)ネイティブである。
本稿では、新たな因果推論分野を基盤として、AIネイティブな無線ネットワークを構築するための新しいフレームワークを紹介する。
因果発見と表現によって対処できる無線ネットワークの課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-23T00:05:39Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
我々は、有害な合成生成を識別し、それらを現実と区別することのできる法医学的手法の開発における重要な必要性を強調した。
我々の焦点は、画像、ビデオ、オーディオ、テキストなどの様々なメディアの形式にまで及んでいる。
この研究は、AI生成技術の急速な進歩と、法科学の基本原理に対する影響により、最も重要である。
論文 参考訳(メタデータ) (2023-06-09T15:55:10Z) - Mitigating Adversarial Attacks in Deepfake Detection: An Exploration of
Perturbation and AI Techniques [1.0718756132502771]
敵の例は微妙な摂動で きれいな画像やビデオに 巧みに注入される
ディープフェイクは世論を操り、世論の評判を損なう強力なツールとして登場した。
この記事では、多面的な敵の例の世界を掘り下げ、ディープラーニングアルゴリズムを騙す能力の背後にある原則を解明する。
論文 参考訳(メタデータ) (2023-02-22T23:48:19Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。