Lite-FPN for Keypoint-based Monocular 3D Object Detection
- URL: http://arxiv.org/abs/2105.00268v1
- Date: Sat, 1 May 2021 14:44:31 GMT
- Title: Lite-FPN for Keypoint-based Monocular 3D Object Detection
- Authors: Lei Yang, Xinyu Zhang, Li Wang, Minghan Zhu, Jun Li
- Abstract summary: Keypoint-based monocular 3D object detection has made tremendous progress and achieved great speed-accuracy trade-off.
We propose a sort of lightweight feature pyramid network called Lite-FPN to achieve multi-scale feature fusion.
Our proposed method achieves significantly higher accuracy and frame rate at the same time.
- Score: 18.03406686769539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection with a single image is an essential and challenging task
for autonomous driving. Recently, keypoint-based monocular 3D object detection
has made tremendous progress and achieved great speed-accuracy trade-off.
However, there still exists a huge gap with LIDAR-based methods in terms of
accuracy. To improve their performance without sacrificing efficiency, we
propose a sort of lightweight feature pyramid network called Lite-FPN to
achieve multi-scale feature fusion in an effective and efficient way, which can
boost the multi-scale detection capability of keypoint-based detectors.
Besides, the misalignment between the classification score and the localization
precision is further relieved by introducing a novel regression loss named
attention loss. With the proposed loss, predictions with high confidence but
poor localization are treated with more attention during the training phase.
Comparative experiments based on several state-of-the-art keypoint-based
detectors on the KITTI dataset show that our proposed method achieves
significantly higher accuracy and frame rate at the same time. The code and
pretrained models will be available at https://github.com/yanglei18/Lite-FPN.
Related papers
- DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - Match and Locate: low-frequency monocular odometry based on deep feature
matching [0.65268245109828]
We introduce a novel approach for the robotic odometry which only requires a single camera.
The approach is based on matching image features between the consecutive frames of the video stream using deep feature matching models.
We evaluate the performance of the approach in the AISG-SLA Visual Localisation Challenge and find that while being computationally efficient and easy to implement our method shows competitive results.
arXiv Detail & Related papers (2023-11-16T17:32:58Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - 3DSSD: Point-based 3D Single Stage Object Detector [61.67928229961813]
We present a point-based 3D single stage object detector, named 3DSSD, achieving a good balance between accuracy and efficiency.
Our method outperforms all state-of-the-art voxel-based single stage methods by a large margin, and has comparable performance to two stage point-based methods as well.
arXiv Detail & Related papers (2020-02-24T12:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.