Vehicle Emissions Prediction with Physics-Aware AI Models: Preliminary
Results
- URL: http://arxiv.org/abs/2105.00375v1
- Date: Sun, 2 May 2021 01:52:59 GMT
- Title: Vehicle Emissions Prediction with Physics-Aware AI Models: Preliminary
Results
- Authors: Harish Panneer Selvam, Yan Li, Pengyue Wang, William F. Northrop,
Shashi Shekhar
- Abstract summary: Given an on-board diagnostics (OBD) dataset and a physics-based emissions prediction model, this paper aims to develop an AI (Artificial Intelligence) method that predicts vehicle emissions.
The proposed AI method has approximately 65% improved predictive accuracy than a non-AI low-order physics model and is approximately 35% more accurate than a baseline model.
- Score: 3.7539433163922826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given an on-board diagnostics (OBD) dataset and a physics-based emissions
prediction model, this paper aims to develop an accurate and
computational-efficient AI (Artificial Intelligence) method that predicts
vehicle emissions. The problem is of societal importance because vehicular
emissions lead to climate change and impact human health. This problem is
challenging because the OBD data does not contain enough parameters needed by
high-order physics models. Conversely, related work has shown that low-order
physics models have poor predictive accuracy when using available OBD data.
This paper uses a divergent window co-occurrence pattern detection method to
develop a spatiotemporal variability-aware AI model for predicting emission
values from the OBD datasets. We conducted a case study using real-world OBD
data from a local public transportation agency. Results show that the proposed
AI method has approximately 65% improved predictive accuracy than a non-AI
low-order physics model and is approximately 35% more accurate than a baseline
model.
Related papers
- Developing Gridded Emission Inventory from High-Resolution Satellite Object Detection for Improved Air Quality Forecasts [1.4238093681454425]
This study presents an innovative approach to creating a dynamic, AI based emission inventory system for use with the Weather Research and Forecasting model coupled with Chemistry (WRF Chem)
The system offers unprecedented temporal and spatial resolution in emission estimates, facilitating more accurate short term air quality forecasts and deeper insights into urban emission dynamics.
Future work will focus on expanding the system's capabilities to non vehicular sources and further improving detection accuracy in challenging environmental conditions.
arXiv Detail & Related papers (2024-10-14T01:32:45Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We also introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive data.
We have utilized this framework to create Prithvi, a transformer-based foundational model pre-trained on more than 1TB of multispectral satellite imagery.
arXiv Detail & Related papers (2023-10-28T10:19:55Z) - Fuel Consumption Prediction for a Passenger Ferry using Machine Learning
and In-service Data: A Comparative Study [5.516843968790116]
This paper presents models that can predict fuel consumption using in-service data collected from a passenger ship.
The best predictive performance was from a model developed using the XGboost technique which is a boosting ensemble approach.
arXiv Detail & Related papers (2023-10-19T19:35:38Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - A Physics Enhanced Residual Learning (PERL) Framework for Vehicle Trajectory Prediction [5.7215490229343535]
PERL integrates the strengths of physics-based and data-driven methods for traffic state prediction.
It preserves the interpretability inherent to physics-based models and has reduced data requirements.
PERL achieves better prediction with a small dataset, compared to the physics model, data-driven model, and PINN model.
arXiv Detail & Related papers (2023-09-26T21:41:45Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Software Defect Prediction Based On Deep Learning Models: Performance
Study [0.5735035463793008]
Two deep learning models, Stack Sparse Auto-Encoder (SSAE) and Deep Belief Network (DBN) are deployed to classify NASA datasets.
According to the conducted experiment, the accuracy for the datasets with sufficient samples is enhanced.
arXiv Detail & Related papers (2020-04-02T06:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.