Physics-based machine learning framework for predicting NOx emissions from compression ignition engines using on-board diagnostics data
- URL: http://arxiv.org/abs/2503.05648v1
- Date: Fri, 07 Mar 2025 18:11:23 GMT
- Title: Physics-based machine learning framework for predicting NOx emissions from compression ignition engines using on-board diagnostics data
- Authors: Harish Panneer Selvam, Bharat Jayaprakash, Yan Li, Shashi Shekhar, William F. Northrop,
- Abstract summary: This work presents a physics-based machine learning framework to predict and analyze oxides of nitrogen (NOx) emissions from compression-ignition engine-powered vehicles.<n> Accurate NOx prediction from on-board diagnostics datasets is difficult because NOx formation inside an engine combustion chamber is governed by complex processes occurring on timescales much shorter than the data collection rate.<n>Black box models like genetic algorithms or neural networks can be more accurate, but have poor interpretability.
- Score: 3.379691307790944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a physics-based machine learning framework to predict and analyze oxides of nitrogen (NOx) emissions from compression-ignition engine-powered vehicles using on-board diagnostics (OBD) data as input. Accurate NOx prediction from OBD datasets is difficult because NOx formation inside an engine combustion chamber is governed by complex processes occurring on timescales much shorter than the data collection rate. Thus, emissions generally cannot be predicted accurately using simple empirically derived physics models. Black box models like genetic algorithms or neural networks can be more accurate, but have poor interpretability. The transparent model presented in this paper has both high accuracy and can explain potential sources of high emissions. The proposed framework consists of two major steps: a physics-based NOx prediction model combined with a novel Divergent Window Co-occurrence (DWC) Pattern detection algorithm to analyze operating conditions that are not adequately addressed by the physics-based model. The proposed framework is validated for generalizability with a second vehicle OBD dataset, a sensitivity analysis is performed, and model predictions are compared with that from a deep neural network. The results show that NOx emissions predictions using the proposed model has around 55% better root mean square error, and around 60% higher mean absolute error compared to the baseline NOx prediction model from previously published work. The DWC Pattern Detection Algorithm identified low engine power conditions to have high statistical significance, indicating an operating regime where the model can be improved. This work shows that the physics-based machine learning framework is a viable method for predicting NOx emissions from engines that do not incorporate NOx sensing.
Related papers
- A Causal Graph-Enhanced Gaussian Process Regression for Modeling Engine-out NOx [0.0]
The objective of this paper is to develop and validate a probabilistic model to predict engine-out NOx emissions using Gaussian process regression.
We employ three variants of Gaussian process models: the first with a standard radial basis function kernel with input window, the second incorporating a deep kernel using convolutional neural networks to capture temporal dependencies, and the third enriching the deep kernel with a causal graph derived via graph convolutional networks.
All models are compared against a virtual ECM sensor using both quantitative and qualitative metrics. We conclude that our model provides an improvement in predictive performance when using an input window and a deep kernel structure.
arXiv Detail & Related papers (2024-10-24T04:23:57Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
We propose a novel model named Graph Recurrent Attentive Neural Process (GRANP) for vehicle trajectory prediction.
GRANP contains an encoder with deterministic and latent paths, and a decoder for prediction.
We show that GRANP achieves state-of-the-art results and can efficiently quantify uncertainties.
arXiv Detail & Related papers (2024-04-09T05:51:40Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Application of Neural Network in the Prediction of NOx Emissions from
Degrading Gas Turbine [0.0]
Nine different process variables, or predictors, are considered in the predictive modelling.
The model trained by neural network algorithm manifests the optimal settings of the process variables to reach the minimum value of NOx emissions.
arXiv Detail & Related papers (2022-09-19T16:44:44Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
We propose a two stage probabilistic forecasting framework able to generate highly accurate, reliable, and sharp forecasts.
The framework offers full transparency on both the point forecasts and the prediction intervals (PIs)
To highlight the performance and the applicability of the proposed framework, real data from two PV parks located in Southern Germany are employed.
arXiv Detail & Related papers (2021-08-05T12:59:38Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Vehicle Emissions Prediction with Physics-Aware AI Models: Preliminary
Results [3.7539433163922826]
Given an on-board diagnostics (OBD) dataset and a physics-based emissions prediction model, this paper aims to develop an AI (Artificial Intelligence) method that predicts vehicle emissions.
The proposed AI method has approximately 65% improved predictive accuracy than a non-AI low-order physics model and is approximately 35% more accurate than a baseline model.
arXiv Detail & Related papers (2021-05-02T01:52:59Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.