Hard Encoding of Physics for Learning Spatiotemporal Dynamics
- URL: http://arxiv.org/abs/2105.00557v1
- Date: Sun, 2 May 2021 21:40:39 GMT
- Title: Hard Encoding of Physics for Learning Spatiotemporal Dynamics
- Authors: Chengping Rao, Hao Sun, Yang Liu
- Abstract summary: We propose a deep learning architecture that forcibly encodes known physics knowledge to facilitate learning in a data-driven manner.
The coercive encoding mechanism of physics, which is fundamentally different from the penalty-based physics-informed learning, ensures the network to rigorously obey given physics.
- Score: 8.546520029145853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling nonlinear spatiotemporal dynamical systems has primarily relied on
partial differential equations (PDEs). However, the explicit formulation of
PDEs for many underexplored processes, such as climate systems, biochemical
reaction and epidemiology, remains uncertain or partially unknown, where very
limited measurement data is yet available. To tackle this challenge, we propose
a novel deep learning architecture that forcibly encodes known physics
knowledge to facilitate learning in a data-driven manner. The coercive encoding
mechanism of physics, which is fundamentally different from the penalty-based
physics-informed learning, ensures the network to rigorously obey given
physics. Instead of using nonlinear activation functions, we propose a novel
elementwise product operation to achieve the nonlinearity of the model.
Numerical experiment demonstrates that the resulting physics-encoded learning
paradigm possesses remarkable robustness against data noise/scarcity and
generalizability compared with some state-of-the-art models for data-driven
modeling.
Related papers
- Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics [0.019972837513980313]
We propose a PINN framework with several improvements for forward and inverse problems for ODE systems.
The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations.
Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.
arXiv Detail & Related papers (2024-06-07T17:40:38Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
We propose a physics-guided hybrid approach for modeling non-autonomous systems under control.
This is extended by a recurrent neural network and trained using a sophisticated multi-objective strategy.
Experiments conducted on real data reveal substantial accuracy improvements by our approach compared to a physics-based model.
arXiv Detail & Related papers (2022-04-27T14:33:02Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
We show how a deep learning framework that encodes given physics structure can be applied to a variety of problems regarding the PDE system regimes.
The resultant learning paradigm that encodes physics shows high accuracy, robustness, interpretability and generalizability demonstrated via extensive numerical experiments.
arXiv Detail & Related papers (2021-06-09T03:02:20Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Augmenting Physical Models with Deep Networks for Complex Dynamics
Forecasting [34.61959169976758]
APHYNITY is a principled approach for augmenting incomplete physical dynamics described by differential equations with deep data-driven models.
It consists in decomposing the dynamics into two components: a physical component accounting for the dynamics for which we have some prior knowledge, and a data-driven component accounting for errors of the physical model.
arXiv Detail & Related papers (2020-10-09T09:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.