Explaining Outcomes of Multi-Party Dialogues using Causal Learning
- URL: http://arxiv.org/abs/2105.00944v1
- Date: Mon, 3 May 2021 15:18:53 GMT
- Title: Explaining Outcomes of Multi-Party Dialogues using Causal Learning
- Authors: Priyanka Sinha, Pabitra Mitra, Antonio Anastasio Bruto da Costa,
Nikolaos Kekatos
- Abstract summary: Multi-party dialogues are common in enterprise social media on technical as well as non-technical topics.
It is important to analyze why a dialogue ends with a particular sentiment from the point of view of conflict analysis.
We propose an explainable time series mining algorithm for such analysis.
- Score: 6.212955085775758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-party dialogues are common in enterprise social media on technical as
well as non-technical topics. The outcome of a conversation may be positive or
negative. It is important to analyze why a dialogue ends with a particular
sentiment from the point of view of conflict analysis as well as future
collaboration design. We propose an explainable time series mining algorithm
for such analysis. A dialogue is represented as an attributed time series of
occurrences of keywords, EMPATH categories, and inferred sentiments at various
points in its progress. A special decision tree, with decision metrics that
take into account temporal relationships between dialogue events, is used for
predicting the cause of the outcome sentiment. Interpretable rules mined from
the classifier are used to explain the prediction. Experimental results are
presented for the enterprise social media posts in a large company.
Related papers
- Fine-Grained Analysis of Team Collaborative Dialogue [1.363890704621148]
We describe initial work towards developing an explainable analytics tool in the software development domain using Slack chats.
We create a novel, hierarchical labeling scheme; design of descriptive metrics based on the frequency of occurrence of dialogue acts; and initial results using a transformer + CRF architecture to incorporate long-range context.
arXiv Detail & Related papers (2023-12-09T05:38:32Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Social Influence Dialogue Systems: A Scoping Survey of the Efforts
Towards Influence Capabilities of Dialogue Systems [50.57882213439553]
Social influence dialogue systems are capable of persuasion, negotiation, and therapy.
There exists no formal definition or category for dialogue systems with these skills.
This study serves as a comprehensive reference for social influence dialogue systems to inspire more dedicated research and discussion in this emerging area.
arXiv Detail & Related papers (2022-10-11T17:57:23Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
We identify the responding relations in the conversation discourse, which link response utterances to their initiations.
We propose a model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links.
Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.
arXiv Detail & Related papers (2021-04-17T17:46:00Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
We create the Switchboard Coherence (SWBD-Coh) corpus, a dataset of human-human spoken dialogues annotated with turn coherence ratings.
Our statistical analysis of the corpus indicates how turn coherence perception is affected by patterns of distribution of entities.
We find that models combining both DA and entity information yield the best performances both for response selection and turn coherence rating.
arXiv Detail & Related papers (2020-06-17T21:02:40Z) - BiERU: Bidirectional Emotional Recurrent Unit for Conversational
Sentiment Analysis [18.1320976106637]
The main difference between conversational sentiment analysis and single sentence sentiment analysis is the existence of context information.
Existing approaches employ complicated deep learning structures to distinguish different parties in a conversation and then model the context information.
We propose a fast, compact and parameter-efficient party-ignorant framework named bidirectional emotional recurrent unit for conversational sentiment analysis.
arXiv Detail & Related papers (2020-05-31T11:13:13Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.