論文の概要: Fusing multimodal neuroimaging data with a variational autoencoder
- arxiv url: http://arxiv.org/abs/2105.01128v1
- Date: Mon, 3 May 2021 19:03:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-06 02:58:38.328887
- Title: Fusing multimodal neuroimaging data with a variational autoencoder
- Title(参考訳): 可変オートエンコーダを用いたマルチモーダルニューロイメージングデータの融合
- Authors: Eloy Geenjaar, Noah Lewis, Zening Fu, Rohan Venkatdas, Sergey Plis,
Vince Calhoun
- Abstract要約: 本研究の目的は、可変オートエンコーダ(VAE)を用いて複数の神経画像の情報を融合するスケーラブルで解釈可能な方法を見つけることである。
表現に基づいて訓練された支持ベクトルマシンは、分類器の受信動作特性(ROC-AUC)0.8610の曲線下領域を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuroimaging studies often involve the collection of multiple data
modalities. These modalities contain both shared and mutually exclusive
information about the brain. This work aims at finding a scalable and
interpretable method to fuse the information of multiple neuroimaging
modalities using a variational autoencoder (VAE). To provide an initial
assessment, this work evaluates the representations that are learned using a
schizophrenia classification task. A support vector machine trained on the
representations achieves an area under the curve for the classifier's receiver
operating characteristic (ROC-AUC) of 0.8610.
- Abstract(参考訳): 神経画像研究は、しばしば複数のデータモダリティの収集を伴う。
これらのモダリティは、脳に関する共有情報と相互排他的情報の両方を含んでいる。
本研究の目的は,可変オートエンコーダ(vae)を用いて,複数の神経画像の情報を融合するスケーラブルで解釈可能な方法を見出すことである。
初期評価を行うために,統合失調症分類タスクを用いて学習した表現を評価する。
表現に基づいて訓練された支持ベクトルマシンは、分類器の受信動作特性(ROC-AUC)0.8610の曲線下領域を達成する。
関連論文リスト
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Self-Supervised Mental Disorder Classifiers via Time Reversal [0.0]
機能的ニューロイメージングデータの時間方向で訓練されたモデルが、下流のタスクに役立つことを実証した。
我々は、独立成分分析(ICA)技術を用いて、fMRIデータから派生した独立成分のディープニューラルネットワークを訓練する。
学習時間方向はfMRIデータにおける因果関係の学習に役立ち、より高速な収束に役立つことを示す。
論文 参考訳(メタデータ) (2022-11-29T17:24:43Z) - Active Selection of Classification Features [0.0]
人口統計などの補助的データは、最も有益なMRIスキャンを持つ個人を含む小さなサンプルを選択するのに役立ちます。
本研究では,2つの実用的手法を提案し,その性能を3つの実世界のベンチマークデータセットで評価する。
論文 参考訳(メタデータ) (2021-02-26T18:19:08Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Mapping individual differences in cortical architecture using multi-view
representation learning [0.0]
本稿では,タスクfMRIと安静状態fMRIで計測されたアクティベーションと接続性に基づく情報を組み合わせて,新しい機械学習手法を提案する。
マルチビューディープ・オートエンコーダは、2つのfMRIモダリティを、患者を特徴づけるスカラースコアを推測するために予測モデルが訓練されたジョイント表現空間に融合させるように設計されている。
論文 参考訳(メタデータ) (2020-04-01T09:01:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。