COMISR: Compression-Informed Video Super-Resolution
- URL: http://arxiv.org/abs/2105.01237v1
- Date: Tue, 4 May 2021 01:24:44 GMT
- Title: COMISR: Compression-Informed Video Super-Resolution
- Authors: Yinxiao Li, Pengchong Jin, Feng Yang, Ce Liu, Ming-Hsuan Yang, Peyman
Milanfar
- Abstract summary: Most videos on the web or mobile devices are compressed, and the compression can be severe when the bandwidth is limited.
We propose a new compression-informed video super-resolution model to restore high-resolution content without introducing artifacts caused by compression.
- Score: 76.94152284740858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most video super-resolution methods focus on restoring high-resolution video
frames from low-resolution videos without taking into account compression.
However, most videos on the web or mobile devices are compressed, and the
compression can be severe when the bandwidth is limited. In this paper, we
propose a new compression-informed video super-resolution model to restore
high-resolution content without introducing artifacts caused by compression.
The proposed model consists of three modules for video super-resolution:
bi-directional recurrent warping, detail-preserving flow estimation, and
Laplacian enhancement. All these three modules are used to deal with
compression properties such as the location of the intra-frames in the input
and smoothness in the output frames. For thorough performance evaluation, we
conducted extensive experiments on standard datasets with a wide range of
compression rates, covering many real video use cases. We showed that our
method not only recovers high-resolution content on uncompressed frames from
the widely-used benchmark datasets, but also achieves state-of-the-art
performance in super-resolving compressed videos based on numerous quantitative
metrics. We also evaluated the proposed method by simulating streaming from
YouTube to demonstrate its effectiveness and robustness.
Related papers
- Implicit Neural Representation for Videos Based on Residual Connection [0.0]
We propose a method that uses low-resolution frames as residual connection that is considered effective for image reconstruction.
Experimental results show that our method outperforms the existing method, HNeRV, in PSNR for 46 of the 49 videos.
arXiv Detail & Related papers (2024-06-15T10:10:48Z) - Video Compression with Arbitrary Rescaling Network [8.489428003916622]
We propose a rate-guided arbitrary rescaling network (RARN) for video resizing before encoding.
The lightweight RARN structure can process FHD (1080p) content at real-time speed (91 FPS) and obtain a considerable rate reduction.
arXiv Detail & Related papers (2023-06-07T07:15:18Z) - Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method [69.868145936998]
Generative coding approaches have been identified as promising alternatives with reasonable perceptual rate-distortion trade-offs.
The great diversity of distortion types in spatial and temporal domains, ranging from the traditional hybrid coding frameworks to generative models, present grand challenges in compressed face video quality assessment (VQA)
We introduce the large-scale Compressed Face Video Quality Assessment (CFVQA) database, which is the first attempt to systematically understand the perceptual quality and diversified compression distortions in face videos.
arXiv Detail & Related papers (2023-04-14T11:26:09Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Self-Conditioned Probabilistic Learning of Video Rescaling [70.10092286301997]
We propose a self-conditioned probabilistic framework for video rescaling to learn the paired downscaling and upscaling procedures simultaneously.
We decrease the entropy of the information lost in the downscaling by maximizing its conditioned probability on the strong spatial-temporal prior information.
We extend the framework to a lossy video compression system, in which a gradient estimator for non-differential industrial lossy codecs is proposed.
arXiv Detail & Related papers (2021-07-24T15:57:15Z) - Feedback Recurrent Autoencoder for Video Compression [14.072596106425072]
We propose a new network architecture for learned video compression operating in low latency mode.
Our method yields state of the art MS-SSIM/rate performance on the high-resolution UVG dataset.
arXiv Detail & Related papers (2020-04-09T02:58:07Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.