Embedding Compression Distortion in Video Coding for Machines
- URL: http://arxiv.org/abs/2503.21469v1
- Date: Thu, 27 Mar 2025 13:01:53 GMT
- Title: Embedding Compression Distortion in Video Coding for Machines
- Authors: Yuxiao Sun, Yao Zhao, Meiqin Liu, Chao Yao, Weisi Lin,
- Abstract summary: Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis.<n>We propose a Compression Distortion Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models.<n>Our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of execution time, and number of parameters.
- Score: 67.97469042910855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis. However, existing codecs are primarily optimized for pixel-domain and HVS-perception metrics rather than the needs of machine vision tasks. To address this issue, we propose a Compression Distortion Representation Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models, addressing the information lost during compression and improving task performance. Specifically, to better analyze the machine-perception-related distortion, we design a compression-sensitive extractor that identifies compression degradation in the feature domain. For efficient transmission, a lightweight distortion codec is introduced to compress the distortion information into a compact representation. Subsequently, the representation is progressively embedded into the downstream model, enabling it to be better informed about compression degradation and enhancing performance. Experiments across various codecs and downstream tasks demonstrate that our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of bitrate, execution time, and number of parameters. Our codes and supplementary materials are released in https://github.com/Ws-Syx/CDRE/.
Related papers
- Plug-and-Play Versatile Compressed Video Enhancement [57.62582951699999]
Video compression effectively reduces the size of files, making it possible for real-time cloud computing.
However, it comes at the cost of visual quality, challenges the robustness of downstream vision models.
We present a versatile-aware enhancement framework that adaptively enhance videos under different compression settings.
arXiv Detail & Related papers (2025-04-21T18:39:31Z) - REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder [52.698595889988766]
We present a novel perspective on learning video embedders for generative modeling.<n>Rather than requiring an exact reproduction of an input video, an effective embedder should focus on visually plausible reconstructions.<n>We propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework.
arXiv Detail & Related papers (2025-03-11T17:51:07Z) - Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - Enhancing the Rate-Distortion-Perception Flexibility of Learned Image
Codecs with Conditional Diffusion Decoders [7.485128109817576]
We show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
In this paper, we show that conditional diffusion models can lead to promising results in the generative compression task when used as a decoder.
arXiv Detail & Related papers (2024-03-05T11:48:35Z) - Device Interoperability for Learned Image Compression with Weights and
Activations Quantization [1.373801677008598]
We present a method to solve the device interoperability problem of a state-of-the-art image compression network.
We suggest a simple method which can ensure cross-platform encoding and decoding, and can be implemented quickly.
arXiv Detail & Related papers (2022-12-02T17:45:29Z) - Cross Modal Compression: Towards Human-comprehensible Semantic
Compression [73.89616626853913]
Cross modal compression is a semantic compression framework for visual data.
We show that our proposed CMC can achieve encouraging reconstructed results with an ultrahigh compression ratio.
arXiv Detail & Related papers (2022-09-06T15:31:11Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Preprocessing Enhanced Image Compression for Machine Vision [14.895698385236937]
We propose a preprocessing enhanced image compression method for machine vision tasks.
Our framework is built upon the traditional non-differential codecs.
Experimental results show our method achieves a better tradeoff between the coding and the performance of the downstream machine vision tasks by saving about 20%.
arXiv Detail & Related papers (2022-06-12T03:36:38Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Microdosing: Knowledge Distillation for GAN based Compression [18.140328230701233]
We show how to leverage knowledge distillation to obtain equally capable image decoders at a fraction of the original number of parameters.
This allows us to reduce the model size by a factor of 20 and to achieve 50% reduction in decoding time.
arXiv Detail & Related papers (2022-01-07T14:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.