Implicit Neural Representation for Videos Based on Residual Connection
- URL: http://arxiv.org/abs/2407.06164v1
- Date: Sat, 15 Jun 2024 10:10:48 GMT
- Title: Implicit Neural Representation for Videos Based on Residual Connection
- Authors: Taiga Hayami, Hiroshi Watanabe,
- Abstract summary: We propose a method that uses low-resolution frames as residual connection that is considered effective for image reconstruction.
Experimental results show that our method outperforms the existing method, HNeRV, in PSNR for 46 of the 49 videos.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video compression technology is essential for transmitting and storing videos. Many video compression methods reduce information in videos by removing high-frequency components and utilizing similarities between frames. Alternatively, the implicit neural representations (INRs) for videos, which use networks to represent and compress videos through model compression. A conventional method improves the quality of reconstruction by using frame features. However, the detailed representation of the frames can be improved. To improve the quality of reconstructed frames, we propose a method that uses low-resolution frames as residual connection that is considered effective for image reconstruction. Experimental results show that our method outperforms the existing method, HNeRV, in PSNR for 46 of the 49 videos.
Related papers
- Neural Video Representation for Redundancy Reduction and Consistency Preservation [0.0]
Implicit neural representation (INR) embed various signals into neural networks.
We propose a video representation method that generates both the high-frequency and low-frequency components of the frame.
Experimental results demonstrate that our method outperforms the existing HNeRV method, achieving superior results in 96 percent of the videos.
arXiv Detail & Related papers (2024-09-27T07:30:12Z) - Perceptual Quality Improvement in Videoconferencing using
Keyframes-based GAN [28.773037051085318]
We propose a novel GAN-based method for compression artifacts reduction in videoconferencing.
First, we extract multi-scale features from the compressed and reference frames.
Then, our architecture combines these features in a progressive manner according to facial landmarks.
arXiv Detail & Related papers (2023-11-07T16:38:23Z) - VCISR: Blind Single Image Super-Resolution with Video Compression
Synthetic Data [18.877077302923713]
We present a video compression-based degradation model to synthesize low-resolution image data in the blind SISR task.
Our proposed image synthesizing method is widely applicable to existing image datasets.
By introducing video coding artifacts to SISR degradation models, neural networks can super-resolve images with the ability to restore video compression degradations.
arXiv Detail & Related papers (2023-11-02T05:24:19Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
It is more efficient to enhance/analyze the coded representations directly without decoding them into pixels.
We propose a versatile neural video coding (VNVC) framework, which targets learning compact representations to support both reconstruction and direct enhancement/analysis.
arXiv Detail & Related papers (2023-06-19T03:04:57Z) - Video Compression with Arbitrary Rescaling Network [8.489428003916622]
We propose a rate-guided arbitrary rescaling network (RARN) for video resizing before encoding.
The lightweight RARN structure can process FHD (1080p) content at real-time speed (91 FPS) and obtain a considerable rate reduction.
arXiv Detail & Related papers (2023-06-07T07:15:18Z) - HNeRV: A Hybrid Neural Representation for Videos [56.492309149698606]
Implicit neural representations store videos as neural networks.
We propose a Hybrid Neural Representation for Videos (HNeRV)
With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks.
arXiv Detail & Related papers (2023-04-05T17:55:04Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
Most videos on the web or mobile devices are compressed, and the compression can be severe when the bandwidth is limited.
We propose a new compression-informed video super-resolution model to restore high-resolution content without introducing artifacts caused by compression.
arXiv Detail & Related papers (2021-05-04T01:24:44Z) - Super-Resolving Compressed Video in Coding Chain [27.994055823226848]
We present a mixed-resolution coding framework, which cooperates with a reference-based DCNN.
In this novel coding chain, the reference-based DCNN learns the direct mapping from low-resolution (LR) compressed video to their high-resolution (HR) clean version at the decoder side.
arXiv Detail & Related papers (2021-03-26T03:39:54Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.