The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory
- URL: http://arxiv.org/abs/2105.01652v2
- Date: Wed, 5 May 2021 01:23:56 GMT
- Title: The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory
- Authors: Sai Saketh Rambhatla and Rama Chellappa and Abhinav Shrivastava
- Abstract summary: We tackle object category discovery, which is the problem of discovering and localizing novel objects in a large unlabeled dataset.
We propose a method to use prior knowledge about certain object categories to discover new categories by leveraging two memory modules.
We show the performance of our detector on the COCO minival dataset to demonstrate its in-the-wild capabilities.
- Score: 85.01439251151203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle object category discovery, which is the problem of discovering and
localizing novel objects in a large unlabeled dataset. While existing methods
show results on datasets with less cluttered scenes and fewer object instances
per image, we present our results on the challenging COCO dataset. Moreover, we
argue that, rather than discovering new categories from scratch, discovery
algorithms can benefit from identifying what is already known and focusing
their attention on the unknown. We propose a method to use prior knowledge
about certain object categories to discover new categories by leveraging two
memory modules, namely Working and Semantic memory. We show the performance of
our detector on the COCO minival dataset to demonstrate its in-the-wild
capabilities.
Related papers
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Towards Novel Class Discovery: A Study in Novel Skin Lesions Clustering [22.24175320515204]
We propose a new novel class discovery framework for automatically discovering new semantic classes from dermoscopy image datasets.
Specifically, we first use contrastive learning to learn a robust and unbiased feature representation based on all data from known and unknown categories.
We conducted extensive experiments on the dermatology dataset ISIC 2019, and the experimental results show that our approach can effectively leverage knowledge from known categories to discover new semantic categories.
arXiv Detail & Related papers (2023-09-28T13:59:29Z) - The Art of Camouflage: Few-Shot Learning for Animal Detection and Segmentation [21.047026366450197]
We address the problem of few-shot learning for camouflaged object detection and segmentation.
We propose FS-CDIS, a framework to efficiently detect and segment camouflaged instances.
Our proposed method achieves state-of-the-art performance on the newly collected dataset.
arXiv Detail & Related papers (2023-04-15T01:33:14Z) - Spatial Reasoning for Few-Shot Object Detection [21.3564383157159]
We propose a spatial reasoning framework that detects novel objects with only a few training examples in a context.
We employ a graph convolutional network as the RoIs and their relatedness are defined as nodes and edges, respectively.
We demonstrate that the proposed method significantly outperforms the state-of-the-art methods and verify its efficacy through extensive ablation studies.
arXiv Detail & Related papers (2022-11-02T12:38:08Z) - Novel Class Discovery without Forgetting [72.52222295216062]
We identify and formulate a new, pragmatic problem setting of NCDwF: Novel Class Discovery without Forgetting.
We propose a machine learning model to incrementally discover novel categories of instances from unlabeled data.
We introduce experimental protocols based on CIFAR-10, CIFAR-100 and ImageNet-1000 to measure the trade-off between knowledge retention and novel class discovery.
arXiv Detail & Related papers (2022-07-21T17:54:36Z) - Exploiting Unlabeled Data with Vision and Language Models for Object
Detection [64.94365501586118]
Building robust and generic object detection frameworks requires scaling to larger label spaces and bigger training datasets.
We propose a novel method that leverages the rich semantics available in recent vision and language models to localize and classify objects in unlabeled images.
We demonstrate the value of the generated pseudo labels in two specific tasks, open-vocabulary detection and semi-supervised object detection.
arXiv Detail & Related papers (2022-07-18T21:47:15Z) - Towards Open-Set Object Detection and Discovery [38.81806249664884]
We present a new task, namely Open-Set Object Detection and Discovery (OSODD)
We propose a two-stage method that first uses an open-set object detector to predict both known and unknown objects.
Then, we study the representation of predicted objects in an unsupervised manner and discover new categories from the set of unknown objects.
arXiv Detail & Related papers (2022-04-12T08:07:01Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - Unsupervised Discovery of the Long-Tail in Instance Segmentation Using
Hierarchical Self-Supervision [3.841232411073827]
We propose a method that can perform unsupervised discovery of long-tail categories in instance segmentation.
Our model is able to discover novel and more fine-grained objects than the common categories.
We show that the model achieves competitive quantitative results on LVIS as compared to the supervised and partially supervised methods.
arXiv Detail & Related papers (2021-04-02T22:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.