Unsupervised Discovery of the Long-Tail in Instance Segmentation Using
Hierarchical Self-Supervision
- URL: http://arxiv.org/abs/2104.01257v1
- Date: Fri, 2 Apr 2021 22:05:03 GMT
- Title: Unsupervised Discovery of the Long-Tail in Instance Segmentation Using
Hierarchical Self-Supervision
- Authors: Zhenzhen Weng, Mehmet Giray Ogut, Shai Limonchik, Serena Yeung
- Abstract summary: We propose a method that can perform unsupervised discovery of long-tail categories in instance segmentation.
Our model is able to discover novel and more fine-grained objects than the common categories.
We show that the model achieves competitive quantitative results on LVIS as compared to the supervised and partially supervised methods.
- Score: 3.841232411073827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance segmentation is an active topic in computer vision that is usually
solved by using supervised learning approaches over very large datasets
composed of object level masks. Obtaining such a dataset for any new domain can
be very expensive and time-consuming. In addition, models trained on certain
annotated categories do not generalize well to unseen objects. The goal of this
paper is to propose a method that can perform unsupervised discovery of
long-tail categories in instance segmentation, through learning instance
embeddings of masked regions. Leveraging rich relationship and hierarchical
structure between objects in the images, we propose self-supervised losses for
learning mask embeddings. Trained on COCO dataset without additional
annotations of the long-tail objects, our model is able to discover novel and
more fine-grained objects than the common categories in COCO. We show that the
model achieves competitive quantitative results on LVIS as compared to the
supervised and partially supervised methods.
Related papers
- Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts [14.631774737903015]
Existing perception models achieve great success by learning from large amounts of labeled data, but they still struggle with open-world scenarios.
We present textiti.e., open-ended object detection, which discovers unseen objects without any object categories as inputs.
We show that our method surpasses the previous open-ended method on the object detection task and can provide additional instance segmentation masks.
arXiv Detail & Related papers (2024-10-08T12:15:08Z) - Unsupervised Collaborative Metric Learning with Mixed-Scale Groups for General Object Retrieval [28.810040080126324]
This paper presents a novel unsupervised deep metric learning approach, termed unsupervised collaborative metric learning with mixed-scale groups (MS-UGCML)
We show that our approach can learn embeddings for objects of varying scales, with an object level and image level mAPs improvement of up to 6.69% and 10.03%, respectively.
arXiv Detail & Related papers (2024-03-16T04:01:50Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
arXiv Detail & Related papers (2021-06-10T17:59:13Z) - Robust Instance Segmentation through Reasoning about Multi-Object
Occlusion [9.536947328412198]
We propose a deep network for multi-object instance segmentation that is robust to occlusion.
Our work builds on Compositional Networks, which learn a generative model of neural feature activations to locate occluders.
In particular, we obtain feed-forward predictions of the object classes and their instance and occluder segmentations.
arXiv Detail & Related papers (2020-12-03T17:41:55Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Unsupervised Part Discovery by Unsupervised Disentanglement [10.664434993386525]
Part segmentations provide information about part localizations on the level of individual pixels.
Large annotation costs limit the scalability of supervised algorithms to other object categories.
Our work demonstrates the feasibility to discover semantic part segmentations without supervision.
arXiv Detail & Related papers (2020-09-09T12:34:37Z) - Commonality-Parsing Network across Shape and Appearance for Partially
Supervised Instance Segmentation [71.59275788106622]
We propose to learn the underlying class-agnostic commonalities that can be generalized from mask-annotated categories to novel categories.
Our model significantly outperforms the state-of-the-art methods on both partially supervised setting and few-shot setting for instance segmentation on COCO dataset.
arXiv Detail & Related papers (2020-07-24T07:23:44Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
We investigate performance drop of the state-of-the-art two-stage instance segmentation model Mask R-CNN on the recent long-tail LVIS dataset.
We unveil that a major cause is the inaccurate classification of object proposals.
We propose a simple calibration framework to more effectively alleviate classification head bias with a bi-level class balanced sampling approach.
arXiv Detail & Related papers (2020-07-23T12:49:07Z) - Unsupervised Image Classification for Deep Representation Learning [42.09716669386924]
We propose an unsupervised image classification framework without using embedding clustering.
Experiments on ImageNet dataset have been conducted to prove the effectiveness of our method.
arXiv Detail & Related papers (2020-06-20T02:57:06Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.