The Art of Camouflage: Few-Shot Learning for Animal Detection and Segmentation
- URL: http://arxiv.org/abs/2304.07444v4
- Date: Tue, 6 Aug 2024 01:31:28 GMT
- Title: The Art of Camouflage: Few-Shot Learning for Animal Detection and Segmentation
- Authors: Thanh-Danh Nguyen, Anh-Khoa Nguyen Vu, Nhat-Duy Nguyen, Vinh-Tiep Nguyen, Thanh Duc Ngo, Thanh-Toan Do, Minh-Triet Tran, Tam V. Nguyen,
- Abstract summary: We address the problem of few-shot learning for camouflaged object detection and segmentation.
We propose FS-CDIS, a framework to efficiently detect and segment camouflaged instances.
Our proposed method achieves state-of-the-art performance on the newly collected dataset.
- Score: 21.047026366450197
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Camouflaged object detection and segmentation is a new and challenging research topic in computer vision. There is a serious issue of lacking data on concealed objects such as camouflaged animals in natural scenes. In this paper, we address the problem of few-shot learning for camouflaged object detection and segmentation. To this end, we first collect a new dataset, CAMO-FS, for the benchmark. As camouflaged instances are challenging to recognize due to their similarity compared to the surroundings, we guide our models to obtain camouflaged features that highly distinguish the instances from the background. In this work, we propose FS-CDIS, a framework to efficiently detect and segment camouflaged instances via two loss functions contributing to the training process. Firstly, the instance triplet loss with the characteristic of differentiating the anchor, which is the mean of all camouflaged foreground points, and the background points are employed to work at the instance level. Secondly, to consolidate the generalization at the class level, we present instance memory storage with the scope of storing camouflaged features of the same category, allowing the model to capture further class-level information during the learning process. The extensive experiments demonstrated that our proposed method achieves state-of-the-art performance on the newly collected dataset. Code is available at https://github.com/danhntd/FS-CDIS.
Related papers
- Camouflaged Image Synthesis Is All You Need to Boost Camouflaged
Detection [65.8867003376637]
We propose a framework for synthesizing camouflage data to enhance the detection of camouflaged objects in natural scenes.
Our approach employs a generative model to produce realistic camouflage images, which can be used to train existing object detection models.
Our framework outperforms the current state-of-the-art method on three datasets.
arXiv Detail & Related papers (2023-08-13T06:55:05Z) - CamoFormer: Masked Separable Attention for Camouflaged Object Detection [94.2870722866853]
We present a simple masked separable attention (MSA) for camouflaged object detection.
We first separate the multi-head self-attention into three parts, which are responsible for distinguishing the camouflaged objects from the background using different mask strategies.
We propose to capture high-resolution semantic representations progressively based on a simple top-down decoder with the proposed MSA to attain precise segmentation results.
arXiv Detail & Related papers (2022-12-10T10:03:27Z) - Towards Deeper Understanding of Camouflaged Object Detection [64.81987999832032]
We argue that the binary segmentation setting fails to fully understand the concept of camouflage.
We present the first triple-task learning framework to simultaneously localize, segment and rank camouflaged objects.
arXiv Detail & Related papers (2022-05-23T14:26:18Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Anabranch Network for Camouflaged Object Segmentation [23.956327305907585]
This paper explores the camouflaged object segmentation problem, namely, segmenting the camouflaged object(s) for a given image.
To address this problem, we provide a new image dataset of camouflaged objects for benchmarking purposes.
In addition, we propose a general end-to-end network, called the Anabranch Network, that leverages both classification and segmentation tasks.
arXiv Detail & Related papers (2021-05-20T01:52:44Z) - The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory [85.01439251151203]
We tackle object category discovery, which is the problem of discovering and localizing novel objects in a large unlabeled dataset.
We propose a method to use prior knowledge about certain object categories to discover new categories by leveraging two memory modules.
We show the performance of our detector on the COCO minival dataset to demonstrate its in-the-wild capabilities.
arXiv Detail & Related papers (2021-05-04T17:55:59Z) - Simultaneously Localize, Segment and Rank the Camouflaged Objects [55.46101599577343]
Camouflaged object detection aims to segment camouflaged objects hiding in their surroundings.
We argue that explicitly modeling the conspicuousness of camouflaged objects against their particular backgrounds can lead to a better understanding about camouflage and evolution of animals.
We present the first ranking based COD network (Rank-Net) to simultaneously localize, segment and rank camouflaged objects.
arXiv Detail & Related papers (2021-03-06T02:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.