論文の概要: Model-free policy evaluation in Reinforcement Learning via upper
solutions
- arxiv url: http://arxiv.org/abs/2105.02135v1
- Date: Wed, 5 May 2021 15:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-06 14:25:08.737419
- Title: Model-free policy evaluation in Reinforcement Learning via upper
solutions
- Title(参考訳): アッパーソリューションによる強化学習におけるモデルフリー政策評価
- Authors: D. Belomestny, I. Levin, E. Moulines, A. Naumov, S. Samsonov, V.
Zorina
- Abstract要約: エージェントのポリシーの上位ソリューションを構築するための新しい上位値反復手順(UVIP)を提案します。
概算 UVIP の収束特性を比較的一般的な仮定で解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we present an approach for building tight model-free confidence
intervals for the optimal value function $V^\star$ in general infinite horizon
MDPs via the upper solutions. We suggest a novel upper value iterative
procedure (UVIP) to construct upper solutions for a given agent's policy. UVIP
leads to a model free method of policy evaluation. We analyze convergence
properties of the approximate UVIP under rather general assumptions and
illustrate its performance on a number of benchmark RL problems.
- Abstract(参考訳): 本研究では,一般無限大地平線mdpにおける最適値関数 $v^\star$ に対するモデルフリーな信頼区間を構築するための手法を提案する。
エージェントのポリシーの上限解を構成するための新しいuper value iterative procedure(uvip)を提案する。
UVIPは、政策評価のモデルフリーな方法につながる。
比較的一般的な仮定の下で近似UVIPの収束特性を解析し、その性能を多くのベンチマークRL問題で説明する。
関連論文リスト
- Sharper Model-free Reinforcement Learning for Average-reward Markov
Decision Processes [21.77276136591518]
我々はマルコフ決定過程(MDPs)のための証明可能なモデルフリー強化学習(RL)アルゴリズムを開発した。
シミュレータ設定では,$widetildeO left(fracSAmathrmsp(h*)epsilon2+fracS2Amathrmsp(h*)epsilon2right)$サンプルを用いて,$epsilon$-optimal Policyを求める。
論文 参考訳(メタデータ) (2023-06-28T17:43:19Z) - Estimating Optimal Policy Value in General Linear Contextual Bandits [50.008542459050155]
多くのバンドイット問題において、政策によって達成可能な最大報酬は、前もって不明であることが多い。
我々は,最適政策が学習される前に,サブ線形データ構造における最適政策値を推定する問題を考察する。
V*$で問題依存上界を推定する,より実用的で効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-19T01:09:24Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
本研究は,RL(Human-in-the-loop reinforcement learning)を軌道的嗜好で検討する。
各ステップで数値的な報酬を受ける代わりに、エージェントは人間の監督者から軌道上のペアよりも優先される。
一般関数近似を用いたPbRLの楽観的モデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-23T09:03:24Z) - Nearly Optimal Policy Optimization with Stable at Any Time Guarantee [53.155554415415445]
citetshani 2020optimisticのポリシーベースのメソッドは、$tildeO(sqrtSAH3K + sqrtAH4K)$である。$S$は状態の数、$A$はアクションの数、$H$は地平線、$K$はエピソードの数、$sqrtSH$は情報理論の下限の$tildeOmega(sqrtSAH)と比べてギャップがある。
論文 参考訳(メタデータ) (2021-12-21T01:54:17Z) - Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations [79.66404989555566]
我々は、リッチな観測空間を持つより現実的な非依存的RLの設定と、近似的ポリシーを含まないような固定されたポリシーのクラス$Pi$を考える。
我々は,MDPの階数$d$の誤差が有界な設定のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-22T03:20:40Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
本稿では,ランダム化最小二乗値反復(RLSVI)アルゴリズムに着想を得たモデルレス強化学習アルゴリズムを提案する。
提案アルゴリズムは,スカラーノイズを用いたトレーニングデータを簡易に摂動させることにより,探索を促進する。
我々はこの理論を、既知の困難な探査課題にまたがる実証的な評価で補完する。
論文 参考訳(メタデータ) (2021-06-15T02:23:07Z) - Reinforcement Learning with General Value Function Approximation:
Provably Efficient Approach via Bounded Eluder Dimension [124.7752517531109]
一般値関数近似を用いた効率の良い強化学習アルゴリズムを確立する。
我々のアルゴリズムは、$d$が複雑性測度である場合、$widetildeO(mathrmpoly(dH)sqrtT)$の後悔の限界を達成することを示す。
我々の理論は線形値関数近似によるRLの最近の進歩を一般化し、環境モデルに対する明示的な仮定をしない。
論文 参考訳(メタデータ) (2020-05-21T17:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。