論文の概要: Efficient $Q$-Learning and Actor-Critic Methods for Robust Average Reward Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2506.07040v1
- Date: Sun, 08 Jun 2025 08:26:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.644412
- Title: Efficient $Q$-Learning and Actor-Critic Methods for Robust Average Reward Reinforcement Learning
- Title(参考訳): ロバスト平均逆強化学習のための効率的な$Q$学習法とアクタ批判法
- Authors: Yang Xu, Swetha Ganesh, Vaneet Aggarwal,
- Abstract要約: 頑健な$Q$ベルマン作用素は、慎重に構築された半ノルムに対して厳密な縮約写像であることを示す。
我々は、$tildecO(epsilon-3)$サンプルにおいて、$epsilon$-optimal robust policyを達成できる自然なアクター批判アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 32.07657827173262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the first $Q$-learning and actor-critic algorithms for robust average reward Markov Decision Processes (MDPs) with non-asymptotic convergence under contamination, TV distance and Wasserstein distance uncertainty sets. We show that the robust $Q$ Bellman operator is a strict contractive mapping with respect to a carefully constructed semi-norm with constant functions being quotiented out. This property supports a stochastic approximation update, that learns the optimal robust $Q$ function in $\tilde{\cO}(\epsilon^{-2})$ samples. We also show that the same idea can be used for robust $Q$ function estimation, which can be further used for critic estimation. Coupling it with theories in robust policy mirror descent update, we present a natural actor-critic algorithm that attains an $\epsilon$-optimal robust policy in $\tilde{\cO}(\epsilon^{-3})$ samples. These results advance the theory of distributionally robust reinforcement learning in the average reward setting.
- Abstract(参考訳): 汚染, テレビ距離, ワッサーシュタイン距離の不確実性セットの下で, 非漸近収束性を有するマルコフ決定過程(MDPs)に対する最初のQ$学習およびアクター批判アルゴリズムを提示する。
頑健な$Q$ベルマン作用素は、厳密に構築された半ノルムに対して厳密な縮約写像であり、定数関数が商化されていることを示す。
このプロパティは確率近似更新をサポートし、$\tilde{\cO}(\epsilon^{-2})$サンプルで最適なロバスト$Q$関数を学習する。
また、この考え方がより堅牢な$Q$関数推定にも適用可能であることを示し、批判的推定にも適用可能であることを示した。
堅牢なポリシーミラー降下更新の理論と組み合わせて、$\epsilon$-optimal robust policy in $\tilde{\cO}(\epsilon^{-3})$ sample を達成する自然なアクター批判アルゴリズムを提案する。
これらの結果は、平均的な報酬設定において、分布的に堅牢な強化学習の理論を推し進める。
関連論文リスト
- Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits [49.96531901205305]
我々は$f$-divergence-regularized offline policy learningを分析する。
逆Kullback-Leibler (KL) の発散に対して、単極集中性の下での最初の$tildeO(epsilon-1)$サンプル複雑性を与える。
これらの結果は,$f$-divergence-regularized policy learningの包括的理解に向けて大きな一歩を踏み出したものと考えられる。
論文 参考訳(メタデータ) (2025-02-09T22:14:45Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
本稿では,円滑なベルマン作用素を持つ連続空間マルコフ決定過程(MDP)の一般クラスにおいて,$varepsilon$-optimal Policyを学習する問題を考察する。
我々のソリューションの鍵となるのは、調和解析のアイデアに基づく新しい射影技術である。
我々の結果は、連続空間 MDP における2つの人気と矛盾する視点のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-05-10T09:58:47Z) - Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination [42.526664955704746]
本研究では,平均推定,PCA,線形回帰に着目したハマー汚染モデルにおけるスパース推定タスクについて検討する。
それぞれのタスクに対して、最適なエラー保証を備えた最初のサンプルと計算効率の良い頑健な推定器を与える。
技術レベルでは、スパース方式における新しい多次元フィルタリング法を開発し、他の応用を見出すことができる。
論文 参考訳(メタデータ) (2024-03-15T15:51:27Z) - Provably Robust Temporal Difference Learning for Heavy-Tailed Rewards [27.209606183563853]
動的勾配クリッピング機構による時間差(TD)学習は,重み付き報酬分布に対して確実に堅牢化できることを確認した。
TD学習に基づくNACの頑健な変種が$tildemathcalO(varepsilon-frac1p)$サンプル複雑性を達成することを示す。
論文 参考訳(メタデータ) (2023-06-20T11:12:21Z) - Improved Sample Complexity Bounds for Distributionally Robust
Reinforcement Learning [3.222802562733787]
トレーニング環境とテスト環境のパラメータミスマッチに対して頑健な制御ポリシーを学習することの問題点を考察する。
本研究では,4つの異なる発散によって特定される不確実性集合に対して,ロバスト位相値学習(RPVL)アルゴリズムを提案する。
提案アルゴリズムは,既存の結果より一様によいサンプル複雑性を$tildemathcalO(|mathcalSmathcalA| H5)$とする。
論文 参考訳(メタデータ) (2023-03-05T21:47:08Z) - Generalized Differentiable RANSAC [95.95627475224231]
$nabla$-RANSACは、ランダム化された堅牢な推定パイプライン全体を学ぶことができる、微分可能なRANSACである。
$nabla$-RANSACは、精度という点では最先端のシステムよりも優れているが、精度は低い。
論文 参考訳(メタデータ) (2022-12-26T15:13:13Z) - Approximate Function Evaluation via Multi-Armed Bandits [51.146684847667125]
既知の滑らかな関数 $f$ の値を未知の点 $boldsymbolmu in mathbbRn$ で推定する問題について検討する。
我々は、各座標の重要性に応じてサンプルを学習するインスタンス適応アルゴリズムを設計し、少なくとも1-delta$の確率で$epsilon$の正確な推定値である$f(boldsymbolmu)$を返す。
論文 参考訳(メタデータ) (2022-03-18T18:50:52Z) - Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations [79.66404989555566]
我々は、リッチな観測空間を持つより現実的な非依存的RLの設定と、近似的ポリシーを含まないような固定されたポリシーのクラス$Pi$を考える。
我々は,MDPの階数$d$の誤差が有界な設定のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-22T03:20:40Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
本稿では,ランダム化最小二乗値反復(RLSVI)アルゴリズムに着想を得たモデルレス強化学習アルゴリズムを提案する。
提案アルゴリズムは,スカラーノイズを用いたトレーニングデータを簡易に摂動させることにより,探索を促進する。
我々はこの理論を、既知の困難な探査課題にまたがる実証的な評価で補完する。
論文 参考訳(メタデータ) (2021-06-15T02:23:07Z) - Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation [30.137884459159107]
連続状態と行動空間を用いた強化学習において,Q$関数を効率よく学習する方法を考える。
我々は、$epsilon$-Schmidt $Q$-functionと$widetildeO(frac1epsilonmax(d1, d_2)+2)$のサンプル複雑性を求める単純な反復学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-06-11T00:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。