DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization
- URL: http://arxiv.org/abs/2108.00069v1
- Date: Fri, 30 Jul 2021 20:35:03 GMT
- Title: DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization
- Authors: Fernando Lejarza and Michael Baldea
- Abstract summary: We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
- Score: 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering the governing laws underpinning physical and chemical phenomena
is a key step towards understanding and ultimately controlling systems in
science and engineering. We introduce Discovery of Dynamical Systems via Moving
Horizon Optimization (DySMHO), a scalable machine learning framework for
identifying governing laws in the form of differential equations from
large-scale noisy experimental data sets. DySMHO consists of a novel moving
horizon dynamic optimization strategy that sequentially learns the underlying
governing equations from a large dictionary of basis functions. The sequential
nature of DySMHO allows leveraging statistical arguments for eliminating
irrelevant basis functions, avoiding overfitting to recover accurate and
parsimonious forms of the governing equations. Canonical nonlinear dynamical
system examples are used to demonstrate that DySMHO can accurately recover the
governing laws, is robust to high levels of measurement noise and that it can
handle challenges such as multiple time scale dynamics.
Related papers
- Governing equation discovery of a complex system from snapshots [11.803443731299677]
We introduce a data-driven, simulation-free framework, called Sparse Identification of Differential Equations from Snapshots (SpIDES)
SpIDES discovers the governing equations of a complex system from snapshots by utilizing the advanced machine learning techniques.
We validate the effectiveness and robustness of SpIDES by successfully identifying the governing equation of an over-damped Langevin system confined within two potential wells.
arXiv Detail & Related papers (2024-10-22T04:55:12Z) - Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression [2.07180164747172]
We develop a framework that learns mathematical expressions modeling complex dynamical behaviors.
We train a small neural network to learn the dynamics of a system, its rate of change in time, and missing model terms.
This, in turn, enables us to predict the future evolution of the dynamical behavior.
arXiv Detail & Related papers (2023-12-21T18:58:41Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-informed Spline Learning for Nonlinear Dynamics Discovery [8.546520029145853]
We propose a Physics-informed Spline Learning framework to discover parsimonious governing equations for nonlinear dynamics.
The framework is based on sparsely sampled noisy data.
The efficacy and superiority of the proposed method has been demonstrated by multiple well-known nonlinear dynamical systems.
arXiv Detail & Related papers (2021-05-05T23:32:43Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
We introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system.
In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way.
This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies.
arXiv Detail & Related papers (2019-09-26T13:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.