論文の概要: Quantitative Evaluation of Alternative Translations in a Corpus of
Highly Dissimilar Finnish Paraphrases
- arxiv url: http://arxiv.org/abs/2105.02477v1
- Date: Thu, 6 May 2021 07:22:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 22:46:06.547010
- Title: Quantitative Evaluation of Alternative Translations in a Corpus of
Highly Dissimilar Finnish Paraphrases
- Title(参考訳): 高相異なるフィンランド語のパラフレーズコーパスにおける代替翻訳の定量的評価
- Authors: Li-Hsin Chang, Sampo Pyysalo, Jenna Kanerva, Filip Ginter
- Abstract要約: 本稿では,最近リリースされたフィンランド語パラフレーズコーパスにおける代替翻訳の違いを定量的に評価する。
体系的な変動を検出する一連の自動ステップと手動分析を組み合わせることで、規則性を明らかにし、翻訳の違いのカテゴリを識別する。
- 参考スコア(独自算出の注目度): 1.8748036062767652
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we present a quantitative evaluation of differences between
alternative translations in a large recently released Finnish paraphrase corpus
focusing in particular on non-trivial variation in translation. We combine a
series of automatic steps detecting systematic variation with manual analysis
to reveal regularities and identify categories of translation differences. We
find the paraphrase corpus to contain highly non-trivial translation variants
difficult to recognize through automatic approaches.
- Abstract(参考訳): 本稿では,最近リリースされたフィンランドのパラフローゼコーパスにおいて,翻訳の非自明な変動に着目した代替翻訳間の差異を定量的に評価する。
体系的な変動を検出する一連の自動ステップと手動分析を組み合わせることで、規則性を明らかにし、翻訳の違いのカテゴリを識別する。
パラフレーズコーパスは, 自動的アプローチによる認識が難しい, 非自明な翻訳変種を含む。
関連論文リスト
- BiVert: Bidirectional Vocabulary Evaluation using Relations for Machine
Translation [4.651581292181871]
本稿では,テキストから翻訳の感覚距離を評価するための双方向意味に基づく評価手法を提案する。
このアプローチでは、包括的な多言語百科事典BabelNetを用いる。
Factual analysis is a strong correlation between the average evaluations generated by our method and the human evaluations across various machine translation system for English- German language pair。
論文 参考訳(メタデータ) (2024-03-06T08:02:21Z) - A Comparative Study of Sentence Embedding Models for Assessing Semantic
Variation [0.0]
本稿では,複数の文献において,連続する文間の意味的類似性の時系列と対の文類似性の行列を用いた最近の文埋め込み法について比較する。
文の埋め込み手法のほとんどは、ある文書において意味的類似性の高相関パターンを推定するが、興味深い相違が見られる。
論文 参考訳(メタデータ) (2023-08-08T23:31:10Z) - Decomposed Prompting for Machine Translation Between Related Languages
using Large Language Models [55.35106713257871]
DecoMTは、単語チャンク翻訳のシーケンスに翻訳プロセスを分解する、数発のプロンプトの新しいアプローチである。
DecoMTはBLOOMモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-22T14:52:47Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - Exploring Diversity in Back Translation for Low-Resource Machine
Translation [85.03257601325183]
バックトランスフォーメーションは、ニューラルマシントランスフォーメーションシステムの性能を改善するために最も広く使われている手法の1つである。
近年の研究では、生成された翻訳の「多様性」を増大させることにより、この手法の有効性を高めることを目指している。
この研究は、トレーニングデータの多様性を理解し、それを語彙的多様性と構文的多様性に分割する、より微妙なフレームワークを推し進めている。
論文 参考訳(メタデータ) (2022-06-01T15:21:16Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - Decoding and Diversity in Machine Translation [90.33636694717954]
NMTが楽しむBLEUスコアに対して支払う費用の多様性の違いを特徴付ける。
本研究は,ジェンダー代名詞を翻訳する際に,検索が既知バイアスの正解源となることを示唆する。
論文 参考訳(メタデータ) (2020-11-26T21:09:38Z) - Detecting Fine-Grained Cross-Lingual Semantic Divergences without
Supervision by Learning to Rank [28.910206570036593]
この研究は、細粒度のセマンティックな違いの予測とアノテーションを改善する。
本稿では,多言語BERTモデルの学習方法として,様々な粒度の合成発散例をランク付けする手法を提案する。
ランク付けの学習は、強い文レベルの類似性モデルよりも正確に、きめ細かい文レベルの発散を検出するのに役立つ。
論文 参考訳(メタデータ) (2020-10-07T21:26:20Z) - Neural disambiguation of lemma and part of speech in morphologically
rich languages [0.6346772579930928]
形態的に豊かな言語における不明瞭な単語の補題と発話の一部を曖昧にすることの問題点を考察する。
そこで本稿では, テキストの未注釈コーパスと形態素解析を用いて, 文脈におけるあいまいな単語の曖昧さを解消する手法を提案する。
論文 参考訳(メタデータ) (2020-07-12T21:48:52Z) - Multilingual Alignment of Contextual Word Representations [49.42244463346612]
BERTはXNLIのゼロショット性能をベースモデルに比べて大幅に改善した。
単語検索の文脈バージョンを導入し、下流のゼロショット転送とよく相関していることを示す。
これらの結果は、大規模多言語事前学習モデルの理解に有用な概念としてコンテキストアライメントをサポートする。
論文 参考訳(メタデータ) (2020-02-10T03:27:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。