A novel method of predictive collision risk area estimation for
proactive pedestrian accident prevention system in urban surveillance
infrastructure
- URL: http://arxiv.org/abs/2105.02572v1
- Date: Thu, 6 May 2021 10:29:44 GMT
- Title: A novel method of predictive collision risk area estimation for
proactive pedestrian accident prevention system in urban surveillance
infrastructure
- Authors: Byeongjoon Noh and Hwasoo Yeo
- Abstract summary: Road traffic accidents pose a severe threat to human lives and have become a leading cause of premature deaths.
A breakthrough for proactively preventing pedestrian collisions is to recognize pedestrian's potential risks based on vision sensors such as CCTVs.
In this study, we propose a predictive collision risk area estimation system at unsignalized crosswalks.
- Score: 6.777019450570473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road traffic accidents, especially vehicle pedestrian collisions in
crosswalk, globally pose a severe threat to human lives and have become a
leading cause of premature deaths. In order to protect such vulnerable road
users from collisions, it is necessary to recognize possible conflict in
advance and warn to road users, not post facto. A breakthrough for proactively
preventing pedestrian collisions is to recognize pedestrian's potential risks
based on vision sensors such as CCTVs. In this study, we propose a predictive
collision risk area estimation system at unsignalized crosswalks. The proposed
system applied trajectories of vehicles and pedestrians from video footage
after preprocessing, and then predicted their trajectories by using deep LSTM
networks. With use of predicted trajectories, this system can infer collision
risk areas statistically, further severity of levels is divided as danger,
warning, and relative safe. In order to validate the feasibility and
applicability of the proposed system, we applied it and assess the severity of
potential risks in two unsignalized spots in Osan city, Korea.
Related papers
- RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - A Real-time Evaluation Framework for Pedestrian's Potential Risk at Non-Signalized Intersections Based on Predicted Post-Encroachment Time [1.0124625066746595]
In this study, a framework with computer vision technologies and predictive models is developed to evaluate the potential risk of pedestrians in real time.
Initiative is the Predicted Post-Encroachment Time (P-PET), derived from deep learning models capable to predict the arrival time of pedestrians and vehicles at intersections.
arXiv Detail & Related papers (2024-04-24T04:10:05Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Intersection Warning System for Occlusion Risks using Relational Local
Dynamic Maps [0.0]
This work addresses the task of risk evaluation in traffic scenarios with limited observability due to restricted sensorial coverage.
To identify the area of sight, we employ ray casting on a local dynamic map providing geometrical information and road infrastructure.
Resulting risk indicators are utilized to evaluate the driver's current behavior, to warn the driver in critical situations, to give suggestions on how to act safely or to plan safe trajectories.
arXiv Detail & Related papers (2023-03-13T16:01:55Z) - A Probabilistic Framework for Estimating the Risk of Pedestrian-Vehicle
Conflicts at Intersections [5.8366275205801985]
This study proposes a probabilistic framework for estimating the risk of pedestrian-vehicle conflicts at intersections.
The proposed framework loosens restrictions of constant speed by predicting trajectories using a Gaussian Process Regression.
Real-world LiDAR data collected at an intersection was used to evaluate the performance of the proposed framework.
arXiv Detail & Related papers (2022-07-28T15:08:41Z) - A Framework for Pedestrian Sub-classification and Arrival Time
Prediction at Signalized Intersection Using Preprocessed Lidar Data [2.8388425545775386]
We develop a systematic framework with a combination of machine learning and deep learning models to distinguish disabled people from normal walk pedestrians.
The proposed framework shows high performance both at vulnerable user classification and arrival time prediction accuracy.
arXiv Detail & Related papers (2022-01-15T15:58:07Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
This study introduces a new concept of a pedestrian safety system that combines the field and the centralized processes.
The system can warn of upcoming risks immediately in the field and improve the safety of risk frequent areas by assessing the safety levels of roads without actual collisions.
arXiv Detail & Related papers (2021-07-26T23:00:56Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.