A Framework for Pedestrian Sub-classification and Arrival Time
Prediction at Signalized Intersection Using Preprocessed Lidar Data
- URL: http://arxiv.org/abs/2201.05877v1
- Date: Sat, 15 Jan 2022 15:58:07 GMT
- Title: A Framework for Pedestrian Sub-classification and Arrival Time
Prediction at Signalized Intersection Using Preprocessed Lidar Data
- Authors: Tengfeng Lin, Zhixiong Jin, Seongjin Choi and Hwasoo Yeo
- Abstract summary: We develop a systematic framework with a combination of machine learning and deep learning models to distinguish disabled people from normal walk pedestrians.
The proposed framework shows high performance both at vulnerable user classification and arrival time prediction accuracy.
- Score: 2.8388425545775386
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The mortality rate for pedestrians using wheelchairs was 36% higher than the
overall population pedestrian mortality rate. However, there is no data to
clarify the pedestrians' categories in both fatal and nonfatal accidents, since
police reports often do not keep a record of whether a victim was using a
wheelchair or has a disability. Currently, real-time detection of vulnerable
road users using advanced traffic sensors installed at the infrastructure side
has a great potential to significantly improve traffic safety at the
intersection. In this research, we develop a systematic framework with a
combination of machine learning and deep learning models to distinguish
disabled people from normal walk pedestrians and predict the time needed to
reach the next side of the intersection. The proposed framework shows high
performance both at vulnerable user classification and arrival time prediction
accuracy.
Related papers
- A Real-time Evaluation Framework for Pedestrian's Potential Risk at Non-Signalized Intersections Based on Predicted Post-Encroachment Time [1.0124625066746595]
In this study, a framework with computer vision technologies and predictive models is developed to evaluate the potential risk of pedestrians in real time.
Initiative is the Predicted Post-Encroachment Time (P-PET), derived from deep learning models capable to predict the arrival time of pedestrians and vehicles at intersections.
arXiv Detail & Related papers (2024-04-24T04:10:05Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - CHAMP: Crowdsourced, History-Based Advisory of Mapped Pedestrians for
Safer Driver Assistance Systems [0.0]
CHAMP (Crowdsourced, History-based Advisories of Mapped Pedestrians) learns pedestrian zones and generates advisory notices when a vehicle is approaching a pedestrian.
We collect and carefully annotated pedestrian data in La Jolla, CA to construct training and test sets of pedestrian locations.
This approach can be tuned such that we achieve a maximum of 100% precision and 75% recall on the experimental dataset.
arXiv Detail & Related papers (2023-01-14T07:28:05Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - A Probabilistic Framework for Estimating the Risk of Pedestrian-Vehicle
Conflicts at Intersections [5.8366275205801985]
This study proposes a probabilistic framework for estimating the risk of pedestrian-vehicle conflicts at intersections.
The proposed framework loosens restrictions of constant speed by predicting trajectories using a Gaussian Process Regression.
Real-world LiDAR data collected at an intersection was used to evaluate the performance of the proposed framework.
arXiv Detail & Related papers (2022-07-28T15:08:41Z) - A novel method of predictive collision risk area estimation for
proactive pedestrian accident prevention system in urban surveillance
infrastructure [6.777019450570473]
Road traffic accidents pose a severe threat to human lives and have become a leading cause of premature deaths.
A breakthrough for proactively preventing pedestrian collisions is to recognize pedestrian's potential risks based on vision sensors such as CCTVs.
In this study, we propose a predictive collision risk area estimation system at unsignalized crosswalks.
arXiv Detail & Related papers (2021-05-06T10:29:44Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Decoding pedestrian and automated vehicle interactions using immersive
virtual reality and interpretable deep learning [6.982614422666432]
This study investigates pedestrian crossing behaviour, as an important element of urban dynamics that is expected to be affected by the presence of automated vehicles.
Pedestrian wait time behaviour is then analyzed using a data-driven Cox Proportional Hazards (CPH) model.
Results show that the presence of automated vehicles on roads, wider lane widths, high density on roads, limited sight distance, and lack of walking habits are the main contributing factors to longer wait times.
arXiv Detail & Related papers (2020-02-18T01:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.