論文の概要: Granger Causality: A Review and Recent Advances
- arxiv url: http://arxiv.org/abs/2105.02675v1
- Date: Wed, 5 May 2021 17:37:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 13:34:26.736657
- Title: Granger Causality: A Review and Recent Advances
- Title(参考訳): Granger Causality: レビューと最近の進歩
- Authors: Ali Shojaie and Emily B. Fox
- Abstract要約: グランガー因果関係は時系列データを解析するための一般的なツールとなっている。
時系列間の因果関係を推測するこの概念の妥当性は、継続的な議論の対象となっている。
- 参考スコア(独自算出の注目度): 10.66048003460524
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Introduced more than a half century ago, Granger causality has become a
popular tool for analyzing time series data in many application domains, from
economics and finance to genomics and neuroscience. Despite this popularity,
the validity of this notion for inferring causal relationships among time
series has remained the topic of continuous debate. Moreover, while the
original definition was general, limitations in computational tools have
primarily limited the applications of Granger causality to simple bivariate
vector auto-regressive processes consisting. Starting with a review of early
developments and debates, this paper discusses recent advances that address
various shortcomings of the earlier approaches, from models for
high-dimensional time series to more recent developments that account for
nonlinear and non-Gaussian observations and allow for sub-sampled and mixed
frequency time series.
- Abstract(参考訳): 半世紀以上前に導入されたGranger causalityは、経済学や金融学、ゲノム学、神経科学など、多くのアプリケーション領域で時系列データを分析するための一般的なツールとなっている。
この人気にもかかわらず、時系列間の因果関係を推測するこの概念の有効性は継続的な議論の対象となっている。
さらに、元々の定義は一般的であったが、計算ツールの限界は、グランジャー因果関係の応用を、単純二変量ベクトル自己回帰過程に限定している。
本稿では,初期の発展と議論のレビューから,高次元時系列モデルから非線形・非ガウシアン観測を考慮し,サブサンプリング・混合周波数時系列を可能にする最近の発展まで,初期のアプローチの様々な欠点を扱った最近の進歩について述べる。
関連論文リスト
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Granger Causality in Extremes [0.0]
時系列における極端な事象から因果関係を特定するための厳密な枠組みを導入する。
本フレームワークは, 因果尾係数を利用して, 主に極端な事象から因果関係を推定するように設計されている。
また,データから極端にグランガー因果性が存在することを検出する新しい推論手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T18:41:07Z) - Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series Data [21.697069894721448]
本研究では,Granger因果構造を推定し,異種干渉時系列データを活用することによって未知のターゲットを同定する理論的基礎的手法を提案する。
本手法は,介入時系列データからGranger因果構造を学習する上で,いくつかの頑健なベースライン法より優れている。
論文 参考訳(メタデータ) (2024-06-14T21:36:00Z) - Generic Temporal Reasoning with Differential Analysis and Explanation [61.96034987217583]
時間差分解析でギャップを埋めるTODAYという新しいタスクを導入する。
TODAYは、システムがインクリメンタルな変化の効果を正しく理解できるかどうかを評価する。
共同学習においてTODAYの指導スタイルと説明アノテーションが有効であることを示す。
論文 参考訳(メタデータ) (2022-12-20T17:40:03Z) - GLACIAL: Granger and Learning-based Causality Analysis for Longitudinal
Studies [19.312260690210458]
我々は「Granger and LeArning-based CausalIty Analysis for Longitudinal Studies」を意味するGLACIALを提案する。
GLACIALは個人を独立したサンプルとして扱い、ホールドアウト個体の平均予測精度を使用して因果関係の効果をテストする。
合成および実データに関する大規模な実験はGLACIALの有用性を実証している。
論文 参考訳(メタデータ) (2022-10-13T23:42:13Z) - Deep Recurrent Modelling of Granger Causality with Latent Confounding [0.0]
本稿では,非線形なGranger因果関係をモデル化するためのディープラーニングに基づくアプローチを提案する。
我々は,非線形時系列におけるモデル性能を実演し,その要因と効果を異なる時間ラグで示す。
論文 参考訳(メタデータ) (2022-02-23T03:26:22Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
本稿では,時間的注意と多面的注意の考え方に基づいて,ニューラルネットワークの能力を拡張するニューラルネットワーク層を提案する。
本手法の有効性を,大規模書籍市場データを用いて検証した。
論文 参考訳(メタデータ) (2022-01-14T14:02:19Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Inductive Granger Causal Modeling for Multivariate Time Series [49.29373497269468]
Inductive GRanger cAusal Modeling (InGRA) framework for inductive Granger causality learning and common causal structure detection。
特に,Granger causal attentionと呼ばれる新しい注意機構を通じて,異なるGranger causal Structureを持つ個人に対して,グローバルモデル1つを訓練する。
このモデルは、異なる個体の共通因果構造を検出し、新しく到着した個体のグランガー因果構造を推定することができる。
論文 参考訳(メタデータ) (2021-02-10T07:48:00Z) - Variable-lag Granger Causality and Transfer Entropy for Time Series
Analysis [7.627597166844701]
固定時間遅延の仮定を緩和する可変ラグ・グランガー因果関係と可変ラグ・トランスファー・エントロピーを開発する。
提案手法では,動的時間ワープ(DTW)の最適ワープパスを用いて,変動ラグ因果関係を推定する。
我々の手法は時系列解析のあらゆる領域に適用できる。
論文 参考訳(メタデータ) (2020-02-01T14:03:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。